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A linear, unsteady theory is developed that relates
transient rotor loads (thrust, roll moment, and pitch moment)
to the overall transient response of the rotor induced-flow
field. The relationships are derived from an unsteady,
actuator-disc theory; and some are obtained in closed form.
The theory is used to determine the effects of lift distri-
bution and shaft angle-of-attack on the said relationships.
Also, two different assumptions are used in the unsteady
calculations. Finally, a prescribed wake analysis is used
to validate the actuator-disc theory for normal flight
conditions. The results reveal both the strengths and
weaknesses of previous formulations and srenagt s in
which further study is needed. The most significant result
is an analytic, three-degree-of-freedom inflow model that
is shown to be accurate for use in the dynamic analysis of
rotors.
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ROTOR DYNAMIC INFLOW DERIVATIVES AND TIME

CONSTANTS FROM VARIOUS INFLOW MODELS

1. INTRODUCTION

Since the inception of the autogyro and helicopter, in-

vestigators have tried physically and mathematically to

describe the airflow through the rotor system. The knowledge

of the total airflow distribution through and about the heli-

copter rotor is required to adequately analyze the following

characteristics of the helicopter: a) performance, b) vi-

bration, c) rotor stability, d) controllability, e) acoustic

signature, and f) rotor air loads and structural limitations.

Over the years, a multitude of approaches have been developed

to model mathematically the rotor flow-field. Much of the

early flow-field theories were based either on the then-

existing propeller theories or on fixed-wing aerodynamic

analogies. However, in the last decades, rotatory-wing aero-

dynamics no longer depend on fixed-wing analogies but on

theories and math models especially derived for helicopter

rotors.

The present rotor inflow theories range from the

extremely simple momentum theory to the very complicated
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vortex lifting-line and lifting-surface theories that re-

quire large computer space and long computer time in their

solution process. Uniform inflow is usually associated with

the momentum theory while the more complicated vortex

theories generally reflect nonuniform inflow. The degree

of nonuniformity of the induced velocities is high]), de-

pendent upon the rotor's flight condition. The simple

models have yielded good results in hover where the inflow

can be assumed to be uniform with azimuth. Forward flight,

on the other hand, causes unsymmetrical velocities on the

rotor both radially and azimuthally. The blade motions

of flapping, coning, and torsion result ia dn instantaneous

induced flow field that has inplane, rotational, and normal

velocity components that vary with time as well as with

rotor azimuth. Consequently, nonuniform inflow theories

are used when modeling forward flight.

The majority of the present inflow theories adequately

predict steady-state performance and blade responses. Flow-

ever, these theories do not attempt to model inflow effects

due to transients in thrust. The transients in rotor thrust

result from pilot-controlled maneuvers, wind gusts, or coupled

rotor-body oscillations.

The intent of this research is to examine the various

helicopter inflow theories, and determine which ones are

suitable for predicting the transient inflow velocities.

Therefore, one of the actuator-disc inflow theories is



extended and modified to obtain dynamic-inflow derivatives

and time constants. The range and validity of the actuator-

disc assumption is then determined by exercising a prescribed-

wake, lifting-line inflow theory.

--
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2. PREVIOUS WORK

Before we proceed with the development of a suitable

dynamic inflow theory, we will review some of the better

known static inflow theories. Although each theory has

merit, it would be impossible, and beyond the intent of

this research, to modify each of the theories to predict

unsteady inflows.

Consequently, the intent of this synopsis is to

briefly describe and comment on the various inflow models

and theories that were reviewed and researched. The ad-

vantages, disadvantages, assumptions, and purpose of the in-

flow theories will be examined, in order to determine those

that might be used to determine the dynamic inflow character-

istics of a rotor. The theories will generally be addressed

in order of sophistication.

2.1 GENERAL INFLOW THEORIES

2.1.1 Simple Actuator-Disc Theories

Si-ile momentum theory was employed by Glauert (1) to

describe the inflow through the rotor system of the auto-

gyro. Simple momentum theory is based on the assumption

of an actuator-disc which is loaded uniformly azimuthally

(although it may vary radially). Thus, the theory assumes

an infinite number of blades without tip losses. In hover,

this results in an inflow distribution for which the induced

* The numbers in parentheses in the text indicate references
in the Bibliography.
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velocity is assumed to be normal to the rotor plane. The

magnitude of the induced velocity, v., for the special case

of uniform loading, is given by

It should be noted that the value of induced velocity from

momentum theory is independent of rotor speed, number of

blades, chord length, or airfoil selection. For the forward-

flight condition, the theory utilizes the analogy of an

elliptically loaded wing having a span of 2R. Glauert

assumes that the total velocity, VR, through the rotor disc

is the vector sum of the induced velocit' and the forward

flight velocity, V. Hence, the induced velocity for the

case of forward flight is:

T D.L. (2)

2P--2V PVR

The induced velocities, vo, is assumed normal to the plane

of the rotor and constant (or uniform) over the rotor disc.

The induced velocity through the rotor in forward flight

or in hover is independent of rotor speed, number of blades

and also rotor angle of attack. Sissingh (2) noted for for-

ward flight, and for V>>Vo, that equation number (2) can be

simplified to

T D.L. (3)
2P rRv 2ov
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This shows that the induced velocity is inversely propor-

tional to forward flight velocity.

Giauert in reference 1 further refined the momentum

theory by assuming that in forward flight there is a linear

variation of the induced velocity along the rotor disc from

the leading edge to the trailing edge. The relationship he

proposed was a first-harmonic variation

v = v0 (1 + K Cosp) (4)

In equation number (4), vo is the induced velocity calculated

from the momentum method. The value of the slope K was left

undetermined. However, Glauert thought that it should be

between 0 and 1. A positive K implies that the induced

velocity is a minimum at the leading edge of the rotor and

a maximum value at the trailing edge as shown in figure 1.

Forward
Velocity Thrust

Leading Trailing
Edge EdgeVI

Induced

Velocity

Figure 1. Glauert's Linear Variation of Momentum
Induced Velocities Along the Rotor Disc
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A significant advantage of momentum theory is that it is

a simple representation of the rotor inflow and is an easy

model with which to wJork. When used in conjunction with

other computer programs (e.g. loads, performance, etc.)

only moderate computer time or space allocation is required.

The disadvantage of momentum theory is that it does not

model details of the inflow. The magnitude of the inflow

velocity and the detailed performance are not completely

accurate in the region of transitional flight.

The constant-inflow assumption of simple momentum

theory in hover can be removed by the blade-element theory.

The blade-element theory for hover is deAloped in reference

(3). The thrust produced by each concentric ring or annulus

of rotor disc is obtained as a function of the rotor inflow

at that point. The inflow at each element can be determined

by a balance of the thrust of the annulus with the overall

momentum change in the airflow through that annulus. The

induced velocity in hover from the blade element theory

is:
v(r) + -caS- + + 8 - )

Note that the induced velocity depends on number of blades,

chord length, slope of the lift curve of the airfoil, and

pitch at the particular radial station. Equation (S) was

also derived using simple vortex theory by Knight and Hefner

in reference 4. For the hover condition, equation (5)



-8-

compares favorably with measured results as shown in figure

2 from reference 5.

30

20 Calculate
Induced
Velocity
(Ft/sec) 1 Measured

.2 .4 .6 .8 1.0

Nondimensional Blade Radius

Figurc 2. Blade-Element Theory Induced Velocity
Distribution for the Hover Condition.

Stepniewski, reference 6, (,evelops a blale-element

method of determining the downwash distribution along the

fore-and-aft rotor diameter for the case of horizontal

flight. It i- possible to determine from the blade twist

both the geometric and equivalent pitch angle of each blade

element along the fore-and-aft disc axis. Stepniewski em-

ploys a finite difference procedure to obtain the induced

velocity. The requirement to know the magnitude and

direction of the relative airflow in the immediate vicinity

of the element of the blade is considered a disadvantage

of the blade-element method.

Harris and McVeigh (7) utilized the blade-element

method of fixed wing aerodynamics rather than the classical
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blade-element, momentum theory to determine rotor inflow.

They postulated that, in ordv'r to acqu i rc zero Ii ft -it t he

tip and root of the blade, the angle-of-attack of the re-

sultant airflow at the tip and root must be zero. Conse-

quently, the induced velocity must increase from the

uniform downwash level and ultimately reach an increment

of velocity that is nearly twice the uniform downwash level

to satisfy the boundary conditions of a practical rotor.

Although the method is an improvement over the classical

blade-element theory, it has not yet been developed for

forward flight and is impractical for transient analysis.

Other than equation (4), all the then: ies discussed

to this point assume uniform inflow (or induced velocities)

in the azimuthal direction. In reference 8, Harris questions

the validity of this assumption. lie shows considerable

discrepancy between the predicted lateral flapping and the

measured values, concluding that significant fore-and-aft

downwash must be occurring.

2.1.2 Simple Vortex Theories

The simple vortex theories were contrived before the

advent of the computer, thus numerous assumptions were

made to simplify the mathematics. These theories describe

the wake as a semi-infinite cylindrical vortex sheet that

is effused from the rotor blade tips. An infinite number of

blades (i.e., actuator disc concept, uniform blade loading,

and neglect of wake contraction) is implied by this theory.
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The Biot-Savart law is used to calculate the induced

velocities caused by the vorticity sheet.

Knight and Hefner (4) were the first to use this

theory in determining the induced velocity and thrust of

a hovering rotor. Coleman, Feingold, and Stempin (reference

9) extended the hovering theory of Knight and Ilefner to

forward flight. The rotor wake was assumed to be an ellip-

tic cylinder of vorticity skewed with respect to the rotor

axis at an angle (i.e., wake skew angle) that depends upon

the flight velocity and upon the induced velocity. Uti-

lizing this method, they were able to calculate the fore-

and-aft variation of the inflow of the retor as proposed by

Glauert in equation (4). The Glauert constant, K, was

explicitly expressed in terms of the wake skew angle, X.

K = tan (x/2 ) (6)

The induced velocity could thus be written as

v(r) = v (1 + r tan (X/2 ) cosq,) (7)

The induced velocity is, therefore, expressed as a function

of the blade radius and azimuth position.

The simple vortex theory was further improved by

Castles and DeLeeuw and Castles and Durham in references 10

and 11. In their analysis, they employed the same wake shape

utilized by Coleman. With numerical integration, the in-

duced velocity normal to the rotor disc was calculated on

the lateral rotor axis.

i
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Heyson in a series of papers, references 12-16, im-

proved on the previous simple vortex theories. He removed

the uniform loading assumption by modeling the wake as a

number of parallel and concentric vortex cylinders. The

overall inflow field, representing the radially nonuniform

loaded rotor, is obtained by superposition of the respec-

tive velocity fields of each vortex cylinder. Consequently,

this method yields a symmetrical inflow field about the

longitudinal plane of symmetry of the rotor. The calcu-

lation of the flow field using the simple vortex theory is

greatly complicated by the inclusion of terms representing

azimuthal variations in circulation. In reierence 14,

Heyson developed the equations for all three components of

induced velocity at an arbitrary point near the rotor and

for an arbitrary harmonic of the azimuthal distribution of

circulation. The values for the induced velocity cannot be

expressed in closed form, and they are obtained by numerical

integration. This process was utilized in obtaining the

charts and table of induced velocities in reference 15. In

order to obtain a realistic azimuthal load variation, the

simple vortex method must utilize numerical integration.

Thus, if the computer is required, thought should be given

to the more exact lifting-line and lifting-surface theories.

The simple vortex theory, even in the most complicated form

developed by Heyson, is still based on actuator theory

(i.e., infinite number of blades).
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The last of the simple vortex inflow theories to be

examined is the flat-wake concept. As promulgated in

reference 17, the flat-wake theory represents a limiting

case where all the vortices transferred to the slipstream

of a rotor, moving horizontally at a relatively high speed,

are reduced to a single ribbon of vorticity. Baskin et al.

made the assumption that for the flat-wake concept, the

variation of circulation with azimuth may be neglected, pro-

vided that for each blade station the circulation is aver-

aged over a complete rotor revolution. Consequently, the

radial change rb(r) of the azimuth-averaged blade circu-

lation becomes the only variation to be c-,ibidered. The

assumption of a rigid wake implies that no interaction

exists between the induced velocity and the wake structure,

thus the problem reverts to a linear problem. In computing

the resultant induced velocity, the velocity components

generated by the lateral vortices and the longitudinal

vortices subsystems forming the wake are computed separately

and then superimposed. The induced velocity in the flat-

wake theory is not expressed by a closed form equation,

* but must be determined numerically. In addition, the

circulation distribution must be assumed or known prior to

induced velocity calculations. The validity of the flat-

wake concept is compromised at low u values, because the

deflection of the wake in the vicinity of the disc is large.

Ormiston developed a flat-wake concept in reference 18
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similar to the previously described flat-wake vortex theory.

A general actuator-disc theory was developed for predicting

the time averaged induced velocity distribution and the

stead), state force and moment response of a helicopter rotor

in forward flight. A solution was obtained by using the

harmonic balance method. The actuator disc theory included

blade flapping dynamics. Examination of the harmonic content

of the rotor blade flapping moment disclosed that the first

harmonic terms, which determine the thrust and moment

response of the rotor, are not affected by downwash har-

monics higher than the second. Only the first two harmonic

of dovmwash were retained for prediction ,. rotor thrust and

moment response.

2.1.3 Vortex Theories-Finite Number of Blades

An inherent limitation of the simple vortex theories,

is that the calculated induced velocities are time-averaged,

rather than instantaneous. As noted by Heyson in reference

16, the time-averaged induced velocities give excellent re-

sults for rotor/wing interference problems, but are totally

inadequate for calculating the blade loads. To satisfactorily

determine the instantaneous induced flow field for a rotor

with a finite number of blades, the vortex wake from each

blade must be considered.

A vortex wake analysis that considers a finite number

of helicopter rotor blades was first performed as early as

1929 by Goldstein (19). lie determined the flow resulting
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from a set of semi-infinite, equidistant, coaxial, helical

surfaces, with each surface representing the vortex sheet

for each blade of the rotor. The theory of Goldstein was

made directly applicable to the hovering helicopter rotor

in reference 20 by Lock. The Goldstein-Lock analysis

neglects the effects of wake contraction, viscosity, and

nonuniform downwash. For years, this method became the

classical method of calculating rotor hovering performance

and inflow. The advantage of the method was that it en-

tailed minimal computational requirements. However, its

usage was outdated with the advent of the high-speed

computer as delineated in reference 21. t Loncise history

and description of helicopter rotor wakes is given by

Landgrebe and Cheney in reference 22, which has as its

primary interest rotor performance.

One of the forerunners of the computerized vortex

theories, and one which resulted in nonuniform inflow, was

that of Piziali. In references 23 and 24 he calculated

the nonuniform inflow for a rotor in hovering and forward

flight. An undistorted rigid wake was assumed, and each

blade was replaced by a segmented lifting line. The shed

and trailing vorticity distributions were represented by a

continuous mesh of straight-segmented, vortex filaments

originating at the instantaneous position of the blade as

shown in figure 3. The strengths rb of the bound vortex
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Z Traillng

[V Vorticity

Figure 3. Undistorted Rigid Wake Distribution of the
Lifting Line Vortex Theory

elements are considered to be the unknowns, ind the computer

iterates until a solution for the given 'light conditions

is obtained. The primary disadvantage of this method is

that computer time can become large and that the nonuniform

inflow velocities are not time dependent, i.e., although

the calculated induced velocities are instantaneous, they

do not vary with time. An improved wake model was required

because the blade inflow was found to be responsive to wake

distortions. This led to the development of the distroted,

free-wake analysis and to the empirically-prescribed wake

analysis. References 25 through 27 are an exemplification

of some of the free-wake computer analyses developed. Cen-

erally, the wake from each rotor blade is represented by

segmented vortex filaments which are allowed to move or

distort freely until wake convergence. No preconceived
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assumptions are made regarding the wake shape. Convergence

implies that the wake geometry is consistent with the

velocity field it induced. In contrast to the rigid-wake

method of Goldstein-Lock, which could be managed through

classical mathematical techniques, the computational pro-

cedure required in the free-wake method could only be

accomplished by use of computers.

A conception of the magnitude and complexity of the

free-wake inflow analysis is given by reference 28, where it

is stated that for a single flight condition of a six bladed

rotor, assuming an azimuth increment for the calculations of

30 degrees and each blade represented by 10 filaments, 1000

wake elements were required. This results in the computation

of 72 million distortion velocities per flight condition.

As a means of increasing the accuracy of the free-wake

analysis and of decreasing the computational time, empirically

prescribed wake models were generated. Test of both full scale

and model helicopter rotors has shown that the rotor, espe-

cially in hover, is heavily influenced by wake distortion

effects. Landgrebe, in a series of papers and reports (28-31),

describes the prescribed-wake theory. The wake shape is speci

fied for the particular flight condition utilizing the gener-

alized wake equations and wake constants which are derived

from experimental data.

The above wake theories are all based on the lifting-line

theory, i.e., each blade was modeled by a single hound vortex



-17-

filament. This model is justifiable for slender rotor

blades, however it may be compromising when employed in

representing low aspect-ratio blades. Subsequently, lifting

surface theories were developed to improve the physical rep-

resentation of a rotor blade. A liftinP surface theory was

used by Johnson and Scully in their calculation of airloads

and by Kouarcek and Tangler to determine the performance of

a hovering rotor. In reference 32, Johnson and Scully

utilized a distorted wake lifting surface theory to deter-

mine the variable inflow in their helicopter airloads

calculations. Johnson's lifting surface theory (33) was

used to calculate vortex induced loads. '-cully's method,

contained in references 34 and 35, was used to calculate the

self-induced distortions of the vortex wake in forward flight.

Kocureck and Tangler in reference 36 developed a pre-

scribed wake, lifting-surface analysis for hovering rotors

with low aspect ratio blades. The prescribed-wake method

was an extension of Landgrebe's method. Additional data from

model studies of low-aspect-ratio blades by Tangler was used

to extend the data base. The lifting surface, as detailed in

reference 37, is imagined to be formed by a continuous layer

of horseshoe-shaped vortices of finite strength. The un-

knowns in the solution technique are the circulation strengths

of each panel. The method of solution is similar to the pre-

scribed lifting line wake theory, except that the boundary

conditions must be satisfied. One of the boundary conditions
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is that the Kutta condition is satisfied. The second bound-

ary condition is that the circulation distribution must in-

duce normal doumwash velocities sufficient to cancel locally

the component of the free-stream velocity normal to the

blade surface. As with the lifting-line vortex theories,

a high-speed computer is required to calculate the induced

velocities at each flight condition. Closed-form solutions

for the induced velocity distribution are not readily obtain-

able in the more complicated vortex theories.

2.1.4 Improved Actuator-Disc Theories

The complexity of the vortex theories results in

excessive computer time. Recently, much .ork has been accom-

plished in the area of improved actuator theories. The con-

cept behind the actuator theory is to provide an approximate

induced velocity distribution with a modest computational

requirement.

Wood and Hermes in reference 38 developed a method based

upon momentum theory for obtaining the induced velocity dis-

tribution of a helicopter rotor in forward flight. Their

theory determines induced velocity as a function of both

blade radius and azimuth. The theory is based upon two

simple factors, the first of which is that the induced veloc-

ity field of a rotor in hover can he determined by combined

blade-element and momentum theory. The second fact is that

the induced velocity buildup for a rotor blade subjected to
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a sudden change of angle-of-attack is essentially exponential

and can readily be approximated by an exponential function,

(Carpenter and Fridovich (39)).

Wood and Hermes rationalized that a blade in forward

flight is constantly entering undisturbed air thus the in-

duced velocity caused by this blade would increase with time

analogous to the sudden change in an angle-of-attack experi-

ment. The total induced velocities are then obtained by

superposition. A disadvantage of the theory is that a

difficult coordinate transformation is required.

Azuma and Kawachi (40) developed an extended momentum

theory that they call "Local Momentum The,yl" for helicopter

rotor aerodynamics. As derived, the theory is applicable

for both steady and unsteady aerodynamic problems because

it calculates the mean induced velocity and also the instan-

taneous induced velocity. The theory is based on the

instantaneous momentum balance with the blade elemental

lift at a local station of the rotor rotational plane. The

rotor blade is considered to be decomposed into a series of

wings, each of which has an elliptical circulation distri-

bution and is so arranged that a tip of each wing is aligned

to the blade tip. Azuma and Kawachi state that the compu-

tational time of their theory is about one tenth to one

hundredth of that of the vortex theory. Stricker and

Gradi (41) have developed a semi-empirical downwash model

which combines momentum theory with properties of the vortex
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wake model to calculate the radial and azimuth variation of

the rotor inflow. The semi-empirical downwash model is based

on the principle of superposition. The basic inflow model,

for both hover and forward flight, is that calculated by thc

method of Wood and Hermes (38). The basic inflow model is

then adjusted by adding wake contraction and tip loss effects.

The wake contraction is simulated by a wake of up to 4 rings

of vortices where the wake geometry is taken from Landgrebe's

prescribed wake model of reference 29. Tip losses are sim-

ulated by an increase of induced velocity as proposed by

Prandtl. Then, the induced velocity portions from modified

blade element momentum theory, from wake -ontraction sim-

ulation, and from tip loss calculation are summed to obtain

the local induced velocity as shown in figure 4.

Induced Velocities

Local Momentum Theory L g

Wake Contraction AVWC

Tip Losses

Resultantiv

+ VWC + VTL

0 1
Blade Radius

Figure 4. The Seri-Empirical Induced Velocity
Superposition Theory of Stricker and
Gradl.
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Stricker and Gradl state that their semi-empirical method

requires 0.2 to 1.0 minutes to get a trim solution, while

the free wake analysis requires 2 to 20 minutes.

MIangler and Squire (42) in the late 1940's adapted the

velocity and acceleration potential concepts to the deter-

mination of the induced velocity field of a rotor. They

were able to determine the mean induced velocities in for-

ward flight by assuming a pressure distribution across the

rotor disc. The helicopter rotor was assumed to be lightly

loaded and was composed of an infinite number of blades.

The rotor was assumed to be replaced by a circular disc

with a pressure step between the faces. ..onsequently, the

thrust of the rotor is equivalent to the discontinuity in

pressure forces between the two faces of the disc.

Mangler and Squire also showed that the Laplace

equation, 72P = 0, and the continuity equation, div V = 0,

must be satisfied everywhere in the flow field. Solution

of the Laplace equation is found in terms of Legendre

functions of the elliptic coordinates associated with the

disc. These are discontinuous between the two faces of the

disc but continuous everywhere else. To simplify the math,

only the case of an axially-symmetric load distribution was

considered (i.e., load was only a function of radius and not

azimuth position). The rotor loading distribution is ex-

panded in a series of Legendre functions, so that the first

term produces the entire thrust T and the rest of the series

.....................
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produces only variations in the load dcstribution. Three

different pressure distributions are obtained. Pressure

distribution I is an elliptic load distribution. The second

term of the series yields the second pressure distribution

which is solely used as an intermediate step to the third

pressure distribution. Pressure distribution 111, which is

a linear combination of pressure distribution I and 11, was

selected such that the thrust vanishes both at the center

and edge of the rotor disc. This is a very good approxi-

mation for the actual thrust distribution on a rotor.

Figures 5 and 6 depict the induced velocity distribution

along the longitudinal and lateral plane -,' symmetry respec-

tively. Th2 induced velocity was calculated using pressure

distribution III and the measured data was obtained from

reference 12. The correlation of the measured data with the

calculated induced velocity distribution of pressure III is

good. Stepniewski, in reference 6, shows that the average

value of induced velocity from Mangler and Squire's theory

is the same as obtained by Glauert in reference 1 (equation

2 of this paper).

Joglekar and Loewy (43), in an attempt to improve blade-

response and blade-airload calculations, extend the theory

of Mangler and Squire. They develop expressions for relating

the assumed pressure field of the rotor disc to the total

aerodynamic thrust and the total steady pitching and rolling

moments attributable to the rotor. They also successfully
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relate the assumed pressure distribution to the time-

dependent aerodynamic rotor blade flapping moments. The

modified actuator-disc theory was used to provide a more

realistic wake-geometry into the classical, vortex-wake

program of Piziali (references 23 and 24). An improved

lift distribution is developed in order to get a better

approximation to the time-averaged induced velocity field.

3Lading Edge Trailing Ede

X - 750

2 - 0.095 /

• ,P.D. lI

V/V 1 0*-Measured

0

1.2 .8 .4 0 .4 .8 1.2
Nondimensional Blade Radius

Figure 5. Comparison of Measured and Mangler-Squire's
Calculated Values of Induced Velocity Along
the Rotor Longitudinal Axis



-24-

Advancing Side Retreating Side

I' I I I ! I I I I I I

2

v/V 0

0 0 tX - 75 0

-2 - 0.0 95

1.2 .8 .4 0 .4 .8 1.2
Nondimensional Blade Radius

Figure 6. Comparison of Measured and Mangler-Squire's
Calculated Values of Induced Velocity Along
the Rotor Lateral Axis.

An ellipsoidal coordinate system is utilized in the

solution of the three dimensional Laplace's equation. The

pressure distribution in its general form is given by

P Pm~v)-Q(i).{Cmcos(nvp)+ Dmsin(nnP))(8n nn n
i,n
m<n

Joglekar and Loewy drop all combinations of m, n in the

equation that result in an even (m + n) because Pn (V) willnn

be even if (m + n) is even. An even P: (v) will yield a

nonpjbysi.callpressure distribution. The coefficients for

eqato (3) 0  C0  1 1equation (13), C1, C3, C 2 , and D2 , are calculated in terms

of rotor thrust, pitching moment and rolling moment.

Joglekar and Loewy also developed a method of expressing

the coefficients Cm and Dm in terms of flapping moments
n n
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experienced by the blades. The induced velocity was sub-

sequently determined by numerical integration. Again we

note that the induced velocities in the more complex

actuator disc theories are incapable of being represented

by a closed form solution.

2.2 DYNAMIC INFLOW THEORIES

Recent research has demonstrated that the lou-frequency

properties of the helicopter rotor wake can have a signifi-

cant effect on the rotor control power, dynamic response,

and stability. An integral part of this research has been

the development of various inflow models that characterize

the low-frequency rotor wake. It is these, theories that we

categorize as dynamic inflow models. Table I is a chrono-

logical list of the research and literature that pertain

to the concept of dynamic inflow. The early work, prior

to 1970, will be discussed in a general fashion. The more

recent work will be presented in greater detail so as to

develop the foundations for this research.

2.2.1 Early Work

Amer, reference 44, developed a theory to predict the

pitch and roll damping of a rotor. He disclosed that the

damping decreases with increasing blade pitch. Sissingh (2)

noted that for extreme inflow conditions, uniform momentum

theory did not adequately predict rotor damping when compared

to experimental data. He postulated that this discrepancy

was due to changes in induced velocities caused by transient
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TABLE 1

Dynamic Inflow History

RESEARCMERS YEAR THEORY STEADY UNSTEADY REMARKS

AMER 1948 MOMENTUM X ROTOR DAMPING IS FUNCTION 0

SISSINGHI 1952 MOMENTUM X ROTOR DAMPING FUNCTION OF
INFLOW k

CARPENTER 1953 MOMENTUM X X INTRODUCED AI'PAREIT MASS.
& USED 3 EQS AND 3 UNKNOWNS

nliDOVxic

LOEWY 1957 VORTEX X X 2 DIMENSIONAL LIFT DEFICIENCY
FUNCTION

muONr 1960 MOMENTUM X X 2 EQS AND 2 UNKNOWNS DID NOT
CONSIDER FLAPPING

TARARINZ 1960 VORTEX X X e!I.USOIDAL AND STEP INPUTS.
& NEGLECTED APPARENT MASS FOR

D=LEST TWO BLADE ROTOR

MILLER 1962 VORTEX X THREE DIMENSIONAL WAKE GEOMETRY.
STEP INPUT

JONES 1965 VORTEX X TRIED TO OBTAIN CLOSED FORM
SOLUTION

SEGEL 1965 VORTEX X RIGID WAKE, TRAILING VORTICES
ONLY. BLADE LOADS

SHUPE 1970 MOMENTUM X EQUIVALENT LOCK NUMBER Y*

XICZYNSRI 1971 X X MEASURED HINGELESS ROTOR RESPONSE
6

SISSINGH

ORISTON 1972 MOMENTUM i DERIVED (L] AND [L EMPIRICAL
& &

PETERS VORTEX

CREWS 1973 MOMENTUM I IDENTIFIED INFLOW GAIN AND
NIONMEMBER TIME TAG

ORMISTON

SUIPHA 1974 VORTEX X CALCULATED ROTOR STABILITY

PETERS 1974 MOMENTUM I I UNSTEADY [L] AND [I] EMPIRICAL

A234 1974 LOCAL x x ECXPRMNTAL
MOMENUIM

CREWS 1977 MOMENTUM X x PARAMETER IDENTIFICATION OF
EMAR E ROTOR WAKE

S
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changes in the rotor thrust. The lift distribution and in-

duced velocity were each formulated as a Fourier series

with the first harmonic sine and cosine terms. It was

reasoned that the lift of the rotor varies with azimuth

angle causing corresponding changes in the induced velocity.

Sissingh shows that the induced velocity distribution re-

sults in an increase in damping in autorotation and a loss

in damping for helicopter flight, especially at higher tip

speed ratios or in climbing flight.

Other researchers reasoned that the time rate of change

of thrust perturbations would affect the magnitude of the

transient changes in the velocity field ,C" the rotor. From

the point of view of the momentum theory, a time interval

must elapse during which the air mass associated with the

rotor is accelerated to its new steady state inflow.

Carpenter and Fridovich (39) measured the response of a

hovering rotor to rapid changes in collective pitch, and

they correlated their experimental data with a modified

momentum theory that they developed. Their experiments

disclosed that the time lag between full pitch and full in-

duced velocity was less than one second. They assumed that

the uniform induced velocity of the initial flow field is

analogous to the flow field produced by an impermeable disc

which is moved normal to its plane. The apparent mass of

the fluid associated with an accelerating impermeable disc

was found to be 64 percent of the mass of the fluid in the
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circumscribed sphere. A certain part of the transient

thrust was directly attributable to the acceleration of the

apparent mass which they included in the classical momentum

theory. Rotor thrust was expressed as a function of in-

duced velocity, blade flapping, and the rotor hub vertical

motion. This yielded three equations to be solved simul-

taneously. The inclusion of blade flapping and hub motion,

however, greatly complicated the analysis. Tip loss effects

were included by integration of thrust only up to 97 percent

of the geometric blade radius. Even with the inclusion of

a tip loss, the calculated thrust coefficients were 10 per-

cent greater than the actual measured thr! .t.

Rebont, in a series of papers (45-47) experimentally

measured the response of a rotor to an increase in collective

pitch during vertical flight. He showed, as did Carpenter,

that the thrust response is highly sensitive to the rate of

change of the collective pitch. Although Rebont's analysis

neglected rotor blade flapping, he used Froude momentum

theory in conjunction with blade-element theory and developed

(from the charts of Oliver) induced velocity relations for

descending flight. This resulted in an equation in the form

of a Riccati differential equation which included an apparent

mass term to describe the thrust perturbations. An interest-

ing anomaly was that Rebont had to double Carpenter's

apparent mass term to correlate the experimental data with

his analysis.
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Loewy, reference 48, investigated unsteady wake effects

on rotor lift. He developed a two-dimensional, lift-

deficiency function that is based on classical nonstationary

flow theory. This theory accounts for both the reduction

in lift and the phase shift due to the shed wake. Miller (49)

used a rigid-wake concept to develop a lift-deficiency func-

tion similar to the aspect-ratio effect of finite wing

theory. Miller states that the apparent mass effects are

lost in the lifting-line approximation, but that they c

be included separately by increasing the effective moment

of inertia of the blade. Along this same line Jones (50)

develops an actuator-disc theory that takes into account

the shed vorticity in the wake. His model provides a

"closed-form" solution for the aerodynamic damping in the

vicinity of hover. Jones also shows that the Miller and

Loewy lift-deficiency functions are equal in hover.

Tararine and Delest (51) tried to relate static lift to

dynamic lift by a mathematical transformation of static

lift which takes into account the amplitude and phase modi-

fications. From photographs of smoke trails, they developed

their formula based on the rotor circulation. They neg-

lected the apparent mass for a two-bladed rotor system be-

cause it was small compared to their blade shape parameter.

Segel (52) developed a method (based on Piziali's

classical-wake computer program, references 23 and 24) to

predict the nonperiodic air loads caused by collective
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inputs to a helicopter in forward flight. Piziali's wake

program was modified to yield a temporal and spatial history

of rotor response variables as functions of time-varying

changes in collective pitch. The calculated flapping and

air-load distribution compared favorably with transient

data obtained in wind-tunnel tests of a full-scale heli-

copter rotor. Segel claimed that the apparent mass approach

of either Carpenter or Rebont was sufficient to relate the

time-varying total thrust on a blade or rotor to the time

variation of blade pitch. However, the apparent mass method

was not considered suitable for computing the inflow distri-

bution required to determine the blade loadings as a function

of spanwise location, azimuth position, and time. He theo-

rized that it was necessary to compute the inflow caused by

a wake possessing elements of vorticity whose strengths vary

nonperiodically as a direct result of the time-varying change

in collective pitch. The following assumptions were made by

Segel to simplify the analysis

(1) The rotor blades were assumed to be structurally

rigid with only a flapping degree of freedom.

(2) The hub of the rotor continued to translate in

level, constant speed flight during the short time

interval that collective pitch is varied.

(3) The geometry of the wake was specified a priori;

the transient-wake model employed only trailing

vortex elements.
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(4) No account was taken of the shed vorticity in the

wake.

2.2.2 Recent Work

The majority of the previous work was directed at ob-

taining improved blade loading calculations. The more recent

dynamic inflow theories that have been developed are directed

at improving rotor response and stability calculations.

Shupe (53) follows the previously mentioned work of Sissingh

and notes that perturbations in rotor lift (due to either

control inputs or blade dynamics) can create perturbations

in the induced flow which, in turn, create alterations in

the expected lift perturbations. Shupe's analysis shows that

for cases in which quasi-steady momentum theory is applicable,

the reduction in expected lift can be accounted for by the

use of a reduced (i.e., equivalent) Lock number. The equiv-

alent Lock number is used by Shupe for the calculation of

rotor control derivatives. The equivalent Lock number for

forward flight is expressed as

* ,(9)1 + aa/BP

Sissingh and Kuczynski in a series of reports,

references 54-57, measure the steady-state and frequency-

response characteristics of a variety of hingeless rotors.

Rotor responses were found with respect to collective pitch,

longitudinal and lateral cyclic pitch, and angle of attack
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variations. A wide range of flight conditions was tested,

which included high and low advance ratios and lightly and

heavily loaded rotors. The rotor derivatives were found to

be more linear at higher lift levels and high advance ratios.

It was apparent from these tests that the rotor control power

and damping did not agree with values calculated from the

classical steady inflow theories.

Azuma, reference 58, develops a method of calculating

the pitch damping of helicopter rotors utilizing nonuniform

inflow. Azuma notes that classical rotor damping derivatives

for pitch and roll sometimes result in overestimated values

for the actual rotor damping, specifically for hingeless rotor

systems in hover or low v and CT forward flight. The theoreti-

cal inaccuracies are assumed to arise from inadequate assump-

tions of the induced flow distribution and the treatment of

pertinent flapwise motion of the blade. A theoretical

method of estimating pitch and roll damping based on the

simple momentum theory is developed by taking into account

the nonuniformity of the induced-flow distribution. The

nonuniform induced velocity is assumed to have an inclined

funnel-shape distribution. Experimental tests conducted by

Azuma showed that the pitch damping is still overestimated

by his nonuniform inflow theory. Azuma also applies his

"Local Momentum Theory" in reference 40 to the unsteady

aerodynamic problems of the helicopter rotor in the low-

frequency range. In particular, he used his method to
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examine the response of rotor thrust and blade flapping

motion to a sudden change of collective pitch. The theory

did not consider the additional apparent mass term of air

associated with blade pitching and flapping motion. Thus,

the theory is only applicable to unsteady aerodynamic

problem of the rotor in the range of very low frequencies,

and is not applicable to more rapid changes.

Shipman (S9) modified Sadler's free-wake analysis,

references 26 and 27, to determine the wake effects on

the stability and control derivatives for various rotor

systems. The control derivatives were assumed to be changes

in thrust, power required, rolling moment, and pitching

moments at the hub due to perturbations in the blade pitch

settings. In the analysis, the blade-loading and response

are coupled together; and iterations are carried out until

the two are compatible. It was shown that the wake had only

a slight effect on most of the stability and control deriv-

atives for the articulated, single-rotor system. However,

the wake becomes significant in or near hover.

Ormiston and Peters, reference 60, employ a quasi-

steady momentum theory and an extended equivalent Lock-

number approach to calculate the control derivatives of a

hingeless rotor in hover and in forward flight. They express

the induced inflow of a rotor by a truncated Fourier series

shown in equation (10), where Xo is the uniform inflow ratio

of momentum theory.
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X 0 + X ss in + )c cos p (10)

They assume a linear relationship between perturbations of

of the inflow components and perturbations of the rotor

thrust and moments.

SdA dA0  dA0  CT

o J ( C/ &T -(U oaF}7 ac

d& dX dX CLd0= s s Lo d(T/7ac) a-(CL-- T d(j /ao) "a

dX dd-
dXc dXc c - M'

dAc (TlaO) (LL7n- dCM/ao) "n (11)

Equation (11) can be rewritten in matrix notation as

{dX} = [L] {dF} (12)

The column matrices {dF} and {dX) represent perturbations

of the generalized rotor forces and inflow components

respectively, while matrix [L] is the nonuniform induced

inflow matrix. Simple momentum theory is used to develop

an inflow model for hover and forward flight.

p1/4 0 01

[Lihover - ao -3/4 0

0 0 -3/4 (13)



[1/2 0 01
ILI a 11 0 -3 /2-

RL forward -/2 0 2
flight 0 0 -3/2 (14)

A second method, based on the simple vortex system is also

used to find the L matrix in forward flight. A bound vortex

is located at the lateral axis with two trailing vortices

extending-rearward in the plane of rotation. The results

are

1/2 0 1

[L]tx aa 0 -8/3 0

1/2 0 0 (15)

Various combinations of equations (14) and (15) were investi-

gated, and a final form[1/2 0 0

[L] combined -0 -3/2 (

1/2 0 (16)

was found to give the best agreement with experimental data

of references 54-57. However, for the definition of [LI in

equation (16), [LI "1 does not exist as opposed to the []

matrices of equation (14) and (15) which have well-behaved

inverses.

The above inflow theory can be incorporated in a

rotor-response progam as follows. The steady-state
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components of the thrust and moment response are expressed

in terms of the control input parameters. This relation is

expressed in matrix notation as

{dF} = [M]{de) + [N){dX) (17)

The matrices [M] and [N] are the rotor response partial

derivatives from the generalized harmonic balance method

w'here
6 (CT/aa) 6 (CT/ao) 6 (CT/ao)

600 60 60

6 (CL/ao) 6 (CL/aa) 6 (CL/ao)

6066 s 669

os c6 (C /ao) 6 (C./ao) 6 (CT/ao)
600 60 60 (18

os c
N 6 (CT/aa) 6(CT/aa) 6 (CT/aa)

6Xo0 6X s  6X c

o s c

6(C L/aao) 6(C~L/ao) 6 (CM/ao)

6 Ao s c

The physical control inputs {de} are considered independent

parameters while the inflow components are treated as de-

pendent variables related to the thrust and moment response

of the rotor by equation (11). Equations (11) and (17) are
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combined to yield the generalized rotor response forces

{dF) = [M']{de} (20)

The matrix [M'] is comprised of the rotor response partial

derivatives and nonuniform induced inflow. Matrix [W'] is

expressed explicitly as

[I] - N[NLI] [m] (21)

Ormiston and Peters show that, given both experimental

measurements of the rotor response derivatives [M'] and the

theoretical partial derivatives for the control and inflow

inputs [M] and [L], equation (21) can be manipulated to

yield an empirical inflow matrix [L].

[LE] = N I [']] (22)

The empirical model assumes linear but coupled relationships

between the three induced flow distributions (uniform,

side-to-side, and fore-to-aft) and the three loading

conditions (thrust, roll moment, and pitch moment). The

nine coupling derivatives were chosen to give the best fit

of the experimental data of references 54-57. These are

given in Table 2.

From their test data, Ormiston and Peters confirm that

the induced flow perturbations have a large effect on control

derivatives. They also conclude that momentum theory ade-

quately predicts all the response derivatives in hover, and

I~
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TABLE 2

Empirical L-atrix

Momentum
%eleunt/i .1 .2 .3 .4 .5 Theory

L 1 +0.50 0.50 0.60 0.90 1.40 0.5

L12  +0.30 +0.30 +0.30 +0.30 +0.50 0

L1 3  0 0 -0.30 -1.00 -1.65 0

L2 1  0 0 0 -0.10 -0.95 0

L22 -6.60 -6.60 -6.70 -6.90 -7.30 -2.0

L23 +1.35 +1.35 +1.35 +1.60 +2.20 0

L31 0.55 0.55 0.55 0.55 0.55 0

L32 -1.50 -1.50 -1.70 -1.85 -2.00 0

L33 0 0 0 0 0 -2.0

*Each entry must be divided by v to give the element of L

I
U



adequately predicts some of the forward flight derivatives.

For the other derivatives in forward flight, momentum theory

was found to be inadequate. Using the empirical inflow

matrix [L E, the accuracy of the predicted responses improvcd

beyond those obtained using the momentum and vortex (L]

matrix. An additional point, not noticed in reference 60 but

mentioned in reference 61, is that [L] -1 for the empirical

model does not exist at the point p = .32.

The nonuniform inflow theory of reference 60 is ex-

tended to include unsteady rotor dynamics in references

62 and 63. In reference 62 an unsteady dynamic rotor hover-

ing wake is modeled as an approximate steady-state wake

with a time lag. The wake model is derived from the hover-

ing unsteady moment of momentum equation. The effect of

the dynamic inflow is shown to be equivalent to replacing

the Lock number by an unsteady equivalent Lock number for

the special case of harmonic inputs.

y* = y/{1 + B4 yL/8(l + iWfT)} (23)

The inflow gain L and time constant T were selected by

parameter identification to obtain a reasonable fit of the

test data.

The unsteady inflow theory is extended by Peters in

reference 63 to encompass more general inflow models. The

total inflow of the rotor as previously given by equation

(10) is modified to include unsteady effects and a linear
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variation with rotor radius. The unsteady, nonuniform in-

flow is approximated by equation (24).

+(r,p) A 0 +o rsin + X c icoso}e iw (24)

The steady portion of the total inflow A contains contri-

butions from the free steam velocity, V/Qr, and from the

steady induced flow, v, due to rotor thrust. The unsteady

inflow components Xo, O s, Ac contain contributions from

iw ~iwip L)q
harmonic plunging ze , rolling Ce , and pitching ae

of the shaft, as well as contributions from the unsteady

induced flow components v0 , VsS Vc due to perturbations in

rotor thrust and moments. The total induced flow is analo-

gously expressed as

v v + (vo + V srSin + Vc rcosp)e i P (25)

Where v is the induced flow contribution from the steady

rotor thrust. The blade pitch angle 0 is expressed in terms

of a steady value e and control system perturbations 00, S

and 6 as delineated in equation 26.

a = + (0 0 isin* + 0icosq))e1w) (26)

With the assumption that the rotor inflow perturbations

Ao, As, Xc are small compared with unity, it follows that

the induced flow perturbations vo, vs, vc and control

perturbations 6o, es , Oct Z, €, a are also small quantities

which results in linear perturbation equations. Peters
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follows previous investigators, i.e. Carpenter, Azuma, Crews

and Hohenemser, and reasons that the apparent mass terms of

a lifting rotor must be written in terms of the reaction

forces (or moments) on an impermeable disc which is instan-

taneously accelerated (or rotated) in still air. The

reactions for an impermeable disc are obtained from poten-

tial flow-theory in terms of elliptic integrals yielding an

apparent mass and inertia values of

m 8 TA = 16 (27)

A  pRA IA  pR(

These values for apparent mass and inertia represent 64

percent of the mass and 57 percent of the rotary inertia of

a sphere of air having radius R. The steady induced-flow

equation and the unsteady, induced-flow perturbation

equation are integrated and yield the following results

C = 2v 1j+X + 2vv + Kmv (28a)

-CL = 1/2vv s + KIV s  (28b)

-CM = I/2vvc + KI1 c  (28c)

The first term in equation (28a) is the steady thrust term

of the rotor and is used to calculate the steady induced

flow v given X, p and CT . The second two terms in

equation (28a) are the thrust perturbation components, while

equations (28b) and (28c) represent the pitch and rolling
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moment perturbation equations. The parameters Km and K1 are,

respectively, the nondimensional apparent mass and inertia

terms of an impermeable disc and have values of

mA

Km - 8 - 0.8488 (29:.)
M~ - -S -np R

I A 16

K - A = 16 0.1132 (29b)

The time constants associated with the induced flow model

utilized in equation (28) are

K
m - 0.4244/v (30a)

2KI
T - - 0.2264/v (30b)rI - V

and the flow parameter, v , is given by

= {u2 + + ;))i( 2 + 1/2(

A harmonic balance yields the resulting complex nonuniform

induced flow matrix, [L), for unsteady momentum theory.

oa 0 0
2v + KiW

m

[L(K)] 0 -ca

0 0 a

L32)
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An unsteady empirical model analogous to that of reference

60, is developed in reference 63. The empirical flow model

of reference 60, [LE], is utilized for the quasi-steady

portion of the induced flow law, while the apparent mass

terms rendered from the potential flow theory, are used for

the unsteady portion of the induced flow. The resulting

empirical unsteady inflow matrix is written below.
_ -1

K m 0 0

[L(K)]E 0 -K I 0]i + [KE]

[L0 0 -K 1  -1

= [LE] c [E] + 1]

(33)

Where [KE] = [LE]I. It should be noted that in order to

obtain the empirical unsteady L-matrix, the steady empiri-

cal LE matrix need not be invertible. Thus, [LE(K)l exists

at p = .32, despite the singularity of LE. By using a

single harmonic balance of the root moment equation, Peters

also develops a complex equivalent Lock number y* as another

method of accounting for the unsteady induced flow.
y_ 1 __

-- - v] T6 - aT6-T6iiW -6-a (34)

It is readily seen from the above equation, that one effect

of induced flow perturbations is to decrease the effective

Lock number, (i.e. to decrease the aerodynamic effectiveness).
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The dynamic inflow model is used successfully by Ormiston

in conjunction with an eigen analysis for the case of blade

flapping dynamics of a hovering rotor in reference 64.

Ormiston further went on to show in this reference that the

dynamic-inflow effects change the transient behavior of rotor

flapping dynamics at low collective pitch, where rotor thrust

and the mean inflow are small. Peters and Gaonkar in refer-

ences 61 and 65 examine the effects of the dynamic inflow

model on the flap-lag dynamic stability of a helicopter

rotor. They find that, when lead-lag motions are included,

the equivalent lock number must be augmented by an equivalent

drag coefficient, Cdo*.

Banerjee, Crews, and Hohenemser (66-67) used parameter

identification from transient rotor response tests to determine

the dynamic inflow characteristics without performing flow

measurements. Two different analytical inflow models were

used. The first was the equivalent Lock number and the

second was the [L] matrix from unsteady momentum inflow.

They had difficulty in identifying the (1,1) term of the

[L] maxtrix and the K term. Both of these terms are

associated with the average induced velocity, vo . Their

results showed that at low advance ratios, the [L]

matrix model gives a better prediction of the flapping re-

sponse than does the y* model.

The synopsis of the inflow theories shows that the

theories range from the simple static momentum theory to

. A, - -
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the more complex wake-vortex and dynamic, nonuniform-inflow

theories. The most promising static theories are the com-

plex actuator theories of Mangler-Squire and Joglekar-Loewy.

The static actuator theories provide good correlation of the

mean velocity inflow both along the longitudinal and lateral

axis. The dynamic inflow models that are based on momentum

theory are shown to correlate well with experimental data for

the hover condition. Momentum theory does not satisfactorily

model dynamic inflow in forward flight. The various inflow

theories: momentum, simple vortex, flat vortex wake, local

momentum, Goldstein Classical Wake, Piziali Rigid Wake, Free

Wake, Prescribe-Wake and Mangler-Squire Actuator Disc con-

tain the necessary components to model the dynamic inflow of

hingeless rotors. However, the primary utilization of these

diverse inflow theories has been in the realm of rotor-

performance verification and prediction (and a subsequent

coupling with computer programs for calculating detailed

rotor blade loads). To date, the majority of these inflow

theories have not been exercised to determine the overall

dynamic inflow characteristics of a rotor. Ormiston (18),

Segel (52), and Shipman (59) attempt somewhat to determine

the overall dynamic inflow characteristics, but fall short

of this goal. In all cases, the inclusion of blade dynamics

over-complicate the problem and mask the true objective of

the dynamic inflow theory. The purpose of this research is to

manipulate various inflow theories, without inclusion of

associated blade dynamics, to obtain the pure d~namic inflow

characteristics.

----- -a k
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3. MATHEMATICAL FORMULATION OF INFLOW MODELS

Two distinct inflow models are utilized to obtain the

dynamic inflow characteristics of a helicopter rotor. The

first inflow theory considered is the actuator-disc theory

developed by Mangler-Squire and extended by Joglekar-Locwy.

The second aspect of the research utilizes the prescribed-

vortex, wake-inflow computer program of Piziali-Landgrobc.

These two inflow theories are vastly different in their

basic assumptions and solution procedures. However, both

of the models are capable of being extended to provide

dynamic inflow characteristics of a rotor. The use of two

diverse theories allows a comparison of the various

assumptions of each theory, and their effects on dynamic

inflow.

The mathematical modifications to the inflow theories

are discussed in detail in this section. The first theory

to be considered is the actuator-disc theory which is

extended to model steady and unsteady aerodynamics.

3.1 ACTUATOR-DISC THEORY

3.1.1 Steady Aerodynamics

The actuator disc theory of Mangler-Squire is re-

structured along the lines of Peters' dynamic-inflow theory.

The general expression for the lift distribution of Mangler-

Squire is given by equation (8). We have previously dis-

cussed the general criteria for the selection of the constants
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m n m
Cand Dn By choosing the constants wisely, one is able to

model any rotor thrust condition. The method utilized to

choose the constants Cm and Dm for this proposed researchn n
will now be described in more detail.

Equation (35) is the expanded form of the pressure

di- ribution, equation (8), and is utilized in the actuator-

disc research.

= = P(v)Q(in)C + PO(V)Q,(in)Co
PV + 1  1 1 

2 (v)Q 2 (in)[Ccos p D2 sinp]

+P1 1 1 11P4 (V)Q4 (in)[Clcosp + D sin*]
+ 2 2 2 2

" P2(v)Q2(in)[C cos24 + D2sin2f] (35)

The nondimensional pressure distribution, 0, is expresscd in

terms of an ellipsoidal coordinate system. The ellipsoidal

coordinate system allows development of a pressure distri-

bution that solves the Laplace equation with a pressure

discontinuity at a circular disc. It will be shown that this

pressure distribution can be used to yield the induced

velocity.

Besides the ellipsoidal coordinate system, we define

both the cartesian coordinate system X,Y,Z, which is parallel

to the forward velocity streamlines, and the X',Y',Zl

coordinate system, which is located on the rotor disc. Follow-

ing the convention of Mangler and Squire, the coordinate
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system is nondimensionalized on the rotor blade or disc

radius. Appendix 7.1 contains all the coordinate system

transformations as well as the figures that depict the

relations between the coordinate systems.
m 

m

The constants Cn and Dn are obtained by judicious

application of physical boundary conditions concernin, t,.

lift on the rotor disc. Over the area of the rotor disc,

the lift density will correspond to the difference in the

pressure p just below the disc surface (n=O, v<O) and above

the disc (n=0, v>O). Thus, the equation for the thrust of

the rotor disc is

T = fpdA - fpdA (36)

A A
lower upper

The pressure p is given in general form by equation (8) and

when combined with equation (36) yields
2'n R

T PV2[f (Cmcosmip + Dm il)dq I[ n' nQII O d
m,n 0
m<n

(lower upper) (37)

It should be noted that the thrust is obtained by integrating

on the disc surface; consequently, n=O in equation (37). In

equation (37), the terms Pm(v) and Qm(in) are Legendren n
Polynomials of the "first" and "second" kind respectively.

Appendix 7.2 list the Legendre polynomials used in this seg-

ment of the research and some of their associated properties.
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This appendix also contains plots of the Pm (v) distributionsn

on the rotor disc and the Qn (in) variations with n. The

thrust equation in its present form can be integrated in the

azimuthal direction. We note that cosm ' and sinm,,, when

integrated over the interval 0 to 2-m, are zero for al] vlu.,s

of m except m=0. This yields 2-fCn as the only non-zero

term. Our equation for thrust is now written as

R

T P°PV2 7TCn Q , Pn (v)rdr (38)

(lower - upper)

0
The Qn (iO) terms can be pulled outside the integral becausem

n-0 on the rotor disc. The Qn (in) are constants on the rotor

disc, and their values are given in Appendix 7.2. Prior to

the final integration of equation (38), the variable of

integration rdr has to be expressed in terms of v in the

ellipsoidal coordinate system. This change in variable is

given in Appendix 7.1 by equation 7.1.7. Thus the thrust

is written as

T = -QV22 R2  X C°Q̂° (iO) f P°(v)vdv (39)
n -

Noting that Pl(v) - v and using the orthogonality relations

given in Appendix 7.2, only the (n=l) term will have a non-

vanishing integral, which yields for the final value of thrust

T = 4/3RR2 PV2CO0 (40)

,iI

- . .. . . . . . . .. . . . " ' " .. . . I I ll . . -.. ." '. . .I 11 i ii I
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Equation (40) is solved for the constant C1 in terms of

standard thrust coefficient CT and the definition of v cm-

ployed by Peters in reference 63. (v = free stream velocity/

nR for this case.)

CT = 3/4-- (41)
V

Thus, using the combination m=0 and n=l will result in a

steady thrust from the pressure field of equation (35).

This thrust is manifested by the term P0(v) which vanishes

as the edge of the rotor disc, thus causing the thrust to

vanish at the edge of the disc. To better represent the

lift distribution of an actual helicopter rotor, the lift

should also vanish at the center of the disc (i.e., the

rotor hub). This is readily accomplished by including other

terms in the pressure distribution which will have no effect

on the total lift as calculated by equation (39), but which

will alter the radial thrust distribution. The Legendre

Polynomials of the first kind (with m=O and n=even integers)

do not vanish at the edge of the rotor disc and consequently

are not used, only the polynomials with n equal to an odd

integer are used. This ensures that the hub thrust density

is zero. If we include the term m=O, n=3 in the pressure

distribution in order to ensure that the pressure distribution

will be zero at the hub, equation (3S) yields

""ow
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CipO (0o)QQ(iO) + COP 0 (42)Io) 1 i) 1 C3P3(0)Q3 )  = 0

Using the values for the Legendre Polynomials given in

Appendix 7.2, the above equation yields the hub density

correction factor C 0

o = 3/2CO (43)C3 1

Combining equations (41) and (43) allows us to relate the

hub density correction factor to the thrust coefficient

CT and the induced flow parameter v.

CT

C = 9/8-7 (44)C3
v

The effects of the hub correction factor on the rotor thrust

distribution can be seen by examining the figures of Appendix

7.2 and 7.3. In Appendix 7.3 all the loading distributions

investigated are described in more detail and displayed

pictorially.

Using the above procedure, we can evaluate the constant

D by employing the equation for the rolling moment of the

rotor disc

L = -T r sin 4,. (45)

Expressing the thrust by equation (37) allows us to rewrite

the equation for the rolling moment as
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R 27!
L. -pV 2  Qn(io) P(v) (CncosmtP+Dnsinm )

15, n Jfo f
m<n

(-rsini)rdrdp (46)

The harmonic functions in equation (46), sinqpcosmo and

sin4psinm, integrated over the interval 0 to 2r, will be

zero for all values of m except m=l which yields the value

iDn. Changing the variable of integration of equation (46)

from r2dr to the value given by equation (7.1.7) of Appendix

7.1 allows us to write the equation for the rolling moment

as I

L = -PV2 R3 > DlQn(iO) f PnJv)v Ij7v dv (47)
n

Using the orthogonal relationship for Legendre Polynomials

of the first kind will make equation (47) zero for all

values of n except for n=l. When n=l the rolling moment

equation can be written as

L = 8/5 inR 3 PV2D1 (48)2

Using the definition of rolling moment coefficient, CL

equation (48) can be solved for the constant Di.

D1 C 8 i L (49)2 -5/8 v

Correspondingly, the pitching moment equation can

be written as
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M = - T r cos w (50)

Which, when combined with the thrust given by equation (37)

yields

E R 2r

N -pV 2  Qn (io) f Pm(v)(Cmcosm p + Dmsinmqj)
m,n 0 0

m<n

(-rcosp)rdrd (51)

Analogous to the rolling moment equation, the harmonic

functions in equation (51) will be zero over the integration

interval for all values of m except m=l which yields CIn

Changing the variable of integration from dr to dv allows

us to write the equation for the pitching moment as

+1

M = -PV 2 CQn(i0) P 1(V) i v (52)
n 

n(

Using the same technique employed on equation (47) the

resulting pitching moment is

N = 8/5 i irR3 pV2C1  (S3)
2

We then solve for the constant C2

C = - 5/8 i CM (54)
2 v

Up to this point, the evaluation of the constants C],0

0, 1 a
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The constants C0 , C2-, and D2 respectively represent the total

thrust, pitching moment, and rolling moment experienced by a

helicopter rotor under the pressure distribution of equation

(8). The constant Co, hub thrust correction factor, ensures

that the thrust is zerD at the hub.

The determination cof the constants C 4 n41  and DP3

for this research program will be different from the theory

employed by Joglekar-Loewy in which they were taken as zero.

The constants C1 and D will be utilized to enforce the

physical boundary condition that the pitching and rolling

moment slopes at the hub are zero. This technique allows

a logical selection of the constants as well as a direct

measure of the effect on induced flow distribution.

The hub moment correction factors, Cl and PI are
4  4

determined by enforcing the boundary condition that the

slope of the pitching and rolling forces are zero at the

hub. This boundary condition is mathematically expressed

as

do r=O- d d v=O = 0 (55)
UJi n=0OI a&V r=

Using equation (55) and considering only those terms of

the pressure distribution, equation (35), which contri-

bute to the pitching moment, yield zero values except for

the following terms

.Mai"



inC l-)dPl(v 1M ~ - dP,'(v)

n=o =

(56)

. . 9/40 C (57)C4 2

1
Using the value for C2 given by equation (54) allows us to

express C4 in terms of the pitching moment coefficient and

induced velocity flow parameter v

1~ CM

using lngmoen hubcorrection factor Diis determineld8

2in their rolling moment

terms in the above procedure. For purposes of brevity only

the result will be shown. Thus, the rolling moment hub

correction factor is

Dn 9/64 i CL (59)4 -
v

This leaves two constants for the pressure distribution

of equation (35), C3 and which have not yet been determined.

These constants will be used to represent a second harmonic

of the pressure distribution. The two-per-rev load is

defined as
D. = - 9 04.i--. ..9
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L - T r sin 2 W (61)

When the value of the thrust given by equation (37) is

substituted into equation (60) the two-per-rev rolling

moment can be written as

R 2r
L7 = -pV Qn(i0) P ()(C ncosm + Dnsinmq)

=m,n n'i fj f (n)nCn

m<n 0O

(-r2sin2j)rdrd (61)

The harmonic functions of equation (61) will be zero over

the integration interval of 0 to 2r for all values of m,

except when m=2. For this case the term D2sin2 2 whenn
2integrated over the interval becomes nD . Changing the

variable of integration from r3dr to the value given by

equation (7.1.7) of Appendix 7.1 allows us to write the

equation for the 2/rev load as

L2  -pV 2R 4  (i) p(v)( 2)vdv

n n
-1

The orthogonal relationship of the Legendre Polynomials

results in n=3 being the only non-zero term. When n=3 thc

2p rolling moment is

L 128/7 PV2 R4D (63)

-- 3.." - -... ' -" ' ' ' ' :' . . d
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The definition for a 2-per-revolution pressure coefficient,

C2L, and the inflow parameter, v, can be used to yield the

constant D.

~C 2L

D = 7/128 - (b4)3v

Repeating the above procedure, the constant can be

determined in terms of the second harmonic pitching moment,

C2NI, and the inflow parameter, v.

C23C 3 = 7/128 -- (05)

v

All the constants pertaining to the pressure distribution

given by equation (35) have now been defined. Up to this

point, v:e have only discussed the rotor pressure distri-

bution itself. We will now discuss how the pressure distri-

bution is used to solve for the induced velocities of the

rotor.

Mangler, in reference 42, utilizes the fact that the

pressure distribution, equation (8), is a solution of the

Laplace equation. Consequently, the nondimensional induced

velocity caused by the prescribed nondimensional pressure

distribution can be determined from the following equation

x
Qi(X,Y,Z) = v f i = X,Y,Z (6(0)

+
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The above equation yields the induced velocity components

at the field point (X,Y,Z). It should be noted that equation

(66) determines the components of the induced velocity of

the rotor disc along the X, Y, and Z axis of the wind

coordinate system.

The dynamic inflow theories were developed and

structured around the premise that the dynamic inflow compnonI1ts

normal to the disc are of primary interest. In view of this,

the conversion of the Mangler actuator theory to a dynamic

inflow theory requires the determination of the induced

velocity normal to the disc. This implies that we need only

determine the induced velocity in the Z' direciton of the

disc coordinates, which is readily accomplished by rewrit-

ing equation (66) as

(X',Y',O)= -vJ ¢Z, (V',Y',')dC (67)

0

where X' - X' + cosa, i' = Y', Z' =-Esina, and

where O'Z' is the partial derivative of the pressure field

with respect to the Z' axis of the disc coordinate system.

The variable C in equation (67) is a dummy variable of

integration in the X direction. Thus,the integration is

performed from the disc to the infinite field along the

streamline parallel to the X axis in the wind system.

Figure 7.1.3 of Appendix 7.1 depicts the integration
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technique. To find OZ, we have to employ the chain rule

because the pressure distribution of equation (8) is given

in terms of the ellipsoidal coordinate system.

30 - Ci  a. i = 1,2,3 (68)
' z' --- r  a

where Ci represents the ellipsoidal coordinate system.

In expanded form equation (68) can be written as

a = av a + an ao + D (69)
97- - r - - * -7-r  a- M a--r a-

7 an andn 2
The terms an, and a-t-r are determined by taking the

the derivative of the ellipsoidal coordinate transformations

listed in Appendix 7.1. The term z s zero, and thus need

not be considered.

av -n(l- 2 )

)2 n 2(70 a-h)

an -(+n__
5772-r  v 2+n2

The terms and are obtained by taking the partial

derivative of the pressure distribution that we are utili-

zing for this research, equation (35). These terms can be

determined by taking the derivative term by term or using

the recursive formula for the derivatives given in Appendix

7.2. The induced velocity normal to disc (i.e., in the Z'
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direction) is

= (X_,Y',Z') -V 1 "9 )  _ + -v(l+n 2) ] dro 2 + T2  n

0 V f(71)

where v and n are functions of F. This equation is

extremely complex and is evaluated by a computer program

that is described in the next section.

A specialization of equation (71) can be made for the

condition of a = 900 (axial flow). For such a condition

Z and are parallel; and equation (71) reduces to

i,-(X',Y',Z') = -V,[n (72)

Thus, the induced flow may he found directly from the non-

dimensional pressure distribution with no integration for

the axial flow case. Another specialization of equation

(71) is the case of edgewise flow, ,i = 0. Here, . is

parallel to the X axis, and a portion of the integrafion is

on the disc.
l -y2  -.

- /" vf 1 dx (73)

00 v=O

x

vf 3 dx

f -n 04 1,--o =

Equations (72) and (73) yield the induced velocities for

L



~-61-

= 900 and a = 0 and are used as a check on the induced

velocity calculated by the computer program.

The induced flow perturbation equation that is used in

the actuator disc research is

+ T sin + v ccos + v2 s r
2 sin2iP + r 2 cos2q,

(74)

The induced flow perturbations will be obtained by inte-

grating the induced velocity w over the disc area. For our

purposes the induced low perturbations are defined as

2 1

Vo = ! f w r dr d

20 1
4 ffw 2 sinpdi dOp

27r 1vc = T f 2  cosp dd ip0c 0

2r 1

c fV02s = f w r sin2 dr d p

0n 1

V 2c f P ~icos2p di-d p (75 a-e)

Due to the symmetries of the problem, only one half of

the induced velocity field need be calculated for a given

coefficient. For example, for all of the C coefficients

*1
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0 ~ 0

1~2 4' 3

8 1t-1

V0 7V f~ 0 -, rsnp i

v~ ~ 2cf~ = -T~ fswn cop dr d (7 ,d~)

Thes flose clffculaet for eac coficet cabDor
into an L3ati
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0
C°

C03

i.D1
'o2

2s2

iC
L~ D 2

Other definitions of v's are also possible. The above are

chosen, however, on the basis of ease of implementation,

mathematical consistency, and physical significance.

The CD coefficients can be related to the lift distri-

bution by the formulas previously obtained.

c01 3/4 0 0 0 0

Co 9/8 0 0 0 0

iDl 0 5/8 0 0 0 CT2 CL
iDl 0 9/64 0 0 0 L

4  1 C (77)
iC1 v 0 0 5/8 0 0 C2L
i2  C1

icl 0 0 9/64 0 0 CM

D 0 0 0 -7/128 0

C2  0 0 0 0 -7/128

or )CD' !2[TI1iF

Iiv
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The [L] matrix, including the huh correction factors
0 is obtained by combining equations (7)and( .

[L] = 1 [I: [T] (78)

The [L5 ] matrix without correction factors (i.e., for a

different radial distribution) is obtained by setting the

C3, D ,C rows of [T] to zero. The first three rows and

columns of [L5 ] correspond to the classical 1"3] matrix.
-l

Comparing [L3] with the first three rows and columns of
-1

[L,] will provide a measure of the effect of azimuthal

lift distribution on induced flow.

3.1.2 Unsteady Aerodynamics

Part of the research was concerned with extending the

steady actuatcr-disc theory of Mangler to the unsteady case.

This represents a significant modification to the steady

inflow theory, and will be developed in detail in this

section. The general momentum equation for incompressible

fluid flow is

6q i
+ qjqi = -  ij = 1,2,3 (79)

where the terminology qi,j means the partial derivative of

qi with respect to j. The continuity equation can be

written as

qi,i 0 i = 1,2,3 (80)

4'
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Equation (79) can be rewritten for the particular geometry of

the actuator disc problem in conjunction with linearization.

This equation, as originally given by Mangler can hc written

as

)t V FS (I.. = - p. (81)~ 1 ji

The above momentum equation can be nondimensionalizcd with

respect to time by making use of the following definitions

and equations.

:y = rt
d(*) -

VFS
V - C2R (82 a--)

A p
p C2 --- R2

x = X/R

The nondimensional linearized momentum equation is

q vqi,x = ' i (83)

The above equation will be solved by two different methods.

In the first method, we assume that the pressure field can be

expressed as mutually in-phase simple harmonic motion. This

will be referred to as "superposition of velocities". In the
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second method, we assume that the inflow distribution varies

as a simple harmonic function. This will be referred to as

"sup'rposition of pressures".

In the superposition of velocities method, all the

components of pressure are assumed to he in-phase.

2 = , ej -
' (84)

where the term is assumed to he a real function. Equation

(84) will be used in conjunction with equation (83) to cal-

culate the induced velocities that result from the pressure

fluctuations. The velocity field is represented by the

complex expression

q e

where q = w + ju (85)

This is a superposition of the complex velocity field.

Substituting equations (84) and (85) into equation (83) and

performing the indicated operations results in the following

equations

(wiwj-uiLw)eJW - v[wi x +ju. le = - ieJWo (86)

Dividing both sides of equation (86) by e and segregating

the real and imaginary components allows us to write the

following two equations

-" , ._



-67-

REAL COMPONENTS wu. + vwi,x =

IMAGiNARY COMi'ONENTS w. - vu. = 0 (87 a-b)
I 1,X

We let the derivatives with respect to the X axis, or wind

axis, be noted by a prime (qi = q') and solve equation

(87b).

V i

1 wo

u" v w. (88 a-b)

Substituting equations (88 a-b) into equation (87a) yields

two equations

w2 . + 2uj' w* iW 2U i + V2 = T

W2  + v2 w' = v i' (89 a-b)i 1 ,i

Taking the derivative of equations (89 a-b) with respect

to i and employing the continuity equation, (80), yields

i.e. V2 p 0 (90)

Thus, we note that, for the complex frequency response

problem, the pressure distribution in equation (84) must

satisfy the Laplace equation, i.e. (90). This is very signif-

icant in that it allows the use of Mangler's static pressure

distribution for the unsteady theory, since equations (8) and
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(35) are solutions to the Laplace equation. It is also

assumed that the induced velocity is zero at a large

distance from the rotor disc, that is to say w.(n,) =

u i (.) = 0.

A special case of equation (87) exists when the

actuator-disc is in still air. This means v=O and

equation 87a reduces to

= (91)
ui W i

Thus, the complex or out-of-phase axial induced velocity

for this case can be determined by taking the derivatives

of the pressure field. No integration is required.

u = - 0 z' (92)
W ,Z

Evaluating equation (92) on the rotor disc yields

W V a 1= 0  (93)

This special case is extremely useful for checking the

unsteady calculations of the computer program. Equations

(89a-b) will be solved by taking the Laplace transform of

the equations. Thus, the equations can be written in the

Laplace domain as
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ui(S) v • 2, (s) (94 a-b)

1

wi (s) = v s - (s)s2 2/v "2 'i

Taking the inverse Laplace transform of equations (96 a-h)

will yield the real and imaginary part of the induced

velocity, u1 and w i resepctively. Before performing the

inverse Laplace transform we note that the inverse Laplace

transform of j (s) will yield the Mangler pressure distri-

bution, 'i* lie also make use of the Laplace transform

of th-c sine and cosine functions, which are

sin ! t =  t ±/V S-

5 +W /V

-1 (95 a-b)

Cos s 2 + 2 /v

Employing the convolution integral, we can readily determine

the induced velocity components as

wi(x,,y,,z,) - ] (C) cos

X' (96 a-b)

ui(x',y',z') = - 4 &) sin

where & is defined along the x axis with E-0 at the plane

of the rotor disc.

We define a reduced frequency K based on air speed,

not 'ip speed, as w/v. This allows us to write the normal
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velocity components at the disc as

0

1. cos (KE)dC (in-phase)1

o (97 a-h)
Uz' J¢z sin (KE)dC (out-of-phase)

Several interesting aspects of these equations should be

pointed out. First, these are identical to the integrals

in the steady aerodynamic theory, equation (67), except for

the weighting functions that have been added. Second,

these weighting functions, cos(K ) and sin(KC), have direct

physical interpretation. They can be associated with an

oscillatory pressure field that varies as a wave traveling

at velocity v and frequency w. Third, for w=O, the above

formulas reduce to equation (67). Fourth, the effect of

unsteadiness is only a function of K. Thus, for a given

rotor angle-of-attack, a single sweep of K will suffice

to give the behavior for all w,v combinations. Lastly, the

similarity of equations for the steady and unsteady induced

velocities allows the utilization of the same numerical

integration technique.

The second assumption used with equation (83) is called

the superposition of pressures. In this method it is assumed

that the inflow distribution varies harmonically but is in-

phase. Thus, the induced velocities are expressed as

qi qi e jw (98)
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where q is assumed to be a real number. The pressure distri-

bution will be represented by the following complex expression

P0 = (A B 0j) e>
W  (99)

hence the name superposition of pressures. Substituting

equations (98) and (99) into the momentum equation, (83),

and performing the indicated operations yields

jwq eJw) - - eJwW (A i + Bo ij)eWj  (11wq vq~ 0 , 0, (100)

Dividing both sides of equation (100) by ej w and segre-

gating the real and imaginary components allows us to write

the following two equations.

REAL COMPONENTS vqix = Aoi

(10la-b)

IMAGINARY COMPONENTS wqi - Bo,i

Taking the derivative of equations (10la-b) with respect to

i and employing the continuity equation (80) yields

V2B0 = 0

(102a-b)

V2Ao = 0

Thus, both pressure functions (A0 and B0 ) can be represented

by the Mangler-Squire series seen earlier. (They both solve

the same equations and boundary conditions.) It follows

directly, under the assumption of in-phase velocities, that
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the relationship between these velocities and the in-phase

pressure (A0 ) is identical to the existing Mangler-Squire

theory, equation (101a). The out-of-phase pressure distri-

bution (B0 ) is then given by equation (lOlb) which states

that the velocity simply equals -1w times the pressure

(with no integration from 0 as previously required).

The implications of equation (102) are very important. it

implies that the pressure from q and (i.e., A and B0)

can be superimposed. This has been an underlying assumption

in all dynamic inflow work to date. Furthermore, since

qi 1 /w Boi, the velocity field is independent of either

the magnitude or direction of the free-stream velocity

(another assumption of previous work in dynamic inflow).

It is reasonable to consider the correlation between

the two above theories (pressure in-phase, velocity in-

phase) and the true solution. One would expect the actual

case to have neither in-phase pressure nor velocity. Thus,

a comparison of results under the two assumptions can be

used to obtain reasonable bounds on the effect of unstead-

iness.

In the superposition of velocities method, we assume

that the pressure field is in-phase with itself. The

general form of the equation can be written as

{v} (L]{FI + [Q]{F (103)
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Where the column matrix {v} is the induced velocity pertur-

bations vo, Vs, vc. The generalized rotor response vector

{F) consists CT, CL, CNI, while {P} contains the unsteady

terms. The [L] matrix will contain the real part of the in-

duced inflow, while the [Q] matrix will contain the imaginary

part of the induced inflow determined by method one. Using

our assumed pressure distribution we can solve equation

(103) for {F).

-1
{F} = [[L] + [Q]i ] {v} (104)

We define a complex [L] matrix as [L(K)]. Equation (104)

can then be written as

-1
{F} I [L(K)] (v} (10S)

In the superposition of pressure method we assume that

the induced velocities are in-phase and we determine the

resulting complex pressure distribution. The general form

of the equation is

-i

[MI{'} + [L] {v) {FI} (106)

Substituting the assumed induced velocity {v} = { )ejw

in equation (106) allows us to rewrite the equation as

-1
[[L] + [?I]iw] {f) - {F- (107)

Thus, the unsteady aerodyramic research is concerned with

the equivalence of equations (105) and (107) i.e.

/
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[[L] + [Q]iw] [L] + [M] i

(108 a-b)

-1 -1
[L] + [Q]iw = [[L] + [M]iw]

where [L(K)] = [L] + [Q]iw

3.2 PRESCRIBED-WAKE VORTEX THEORY

The United Technologies Research Center's Prescribed

Wake program was used to investigate the effects of a

finite number of blades and wake geometry on the dynamic

inflow [L] matrix. This program was developed by Landgrebe

(68) and is based on the lifting line analysis of Piziali

(23,24). The program originally was developed to calculate

the induced velocity distribution of a rotor, for a given

wake geometry. The program is capable of generating a

classical wake which is based on the momentum induced

velocity, or a wake geometry can be inputed from prescribed

wake data. The program has a capability of modeling the

tip vortex roll up by combining a designated number of

vortices after a specified number of azimuth positions.

The program had to be modified to calculate the aero-

dynamic loading coefficients, {F), as previously defined in

the dynamic inflow section. The formulas for the aero-

dynamic loading coefficients are given below. In the

formulas, L' is the lift per blade radial station, b is the

number of rotor blades, and N is the number of rotor azimuth

- -
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positions used in the calculations.

N
b~ . X'(i)dr

b
CT 24

N P §2 R

(109 a-c)

b £t'(i)r sinipdr

C L =N p r Q 2 RS

b Z'(i)r cosp dr
CM -

N P 7 02 R5

The induced flow perturbations v0o vs and vc are

obtained by integrating the axial induced velocity over

the disc. The integration of equation (75 a-c) had to bc

included in the program.

To uniquely determine the 3x3 [L] matrix, which has

9 unknowns, requires three perturbations of the rotor inputs,

(60 , es  e ) from the trim condition. Thus, upon trimming

the rotor for a given flight condition equations (75) and

(109) are used to obtain

Vs : {v} TRIM
Vc TRIM

(110)

CM ]TRIM
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The rotor inputs are in turn perturbed for three separate

cases, which yields three distinct {v} and {F} matrices.

{V) i=1,3 (112)

{F i

However, we are interested in the {v} and {F) as a result

of the input perturbations, so we define a {f} and {F} which

result from the perturbations

{ {V}i {V}TRIM
(113)

{;}i = {F~i = {F}TRIM

We can now write the [L] matrix as

S0(1) _ (2) v (3) L(1,l) L(1,2) L(1,3) CT(1) T(2) CT(3)

c(1) V (2) V (3) L(3,1) L(3,2) L(3,3) (1) 'C(2) CM( 3)

(114)

or [] = ![L] IF ]
V

Upon inverting [F] and post-multiplying by it, we obtain the

[L] matrix we desire.

-1

IL] = v[][ ] (115)

It should be noted, that for the above solution technique

of the [L] matrix, the [F] matrix must be non-singular. Thus

independent loading conditions must be prescribed.
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4. DINVELOPMENT OF COMIPUTER MODELS

The computer programs utilized in this research will

be discussed in this section. Two large Fortran computer

programs were utilized in the bulk of the research. One of

the programs was written and developed as a specific part

of this research. This program was used in the actuator-

disc calculations of the steady and unsteady [LI matrices.

The second program was the UTRC prescribed wake computer

program which was modified to calculate the steady dynamic

inflow [L] matrix.

4.1 ACTUATOR-DISC PROGRAM

A Fortran computer program was written to numerically

integrate equation (71) in order to obtain the induced

velocities at the rotor disc. As this program is quite

lengthy (over 1300 lines of code) it will only be discussed

in a general manner. The basic calculation procedure and

some developmental history is presented in the following

paragraphs. The computer program was first developed to

perform the calculations of the steady [L] matrix. This

allowed a verification of the program logic and a develop-

ment of a reliable steady [L] matrix before modification

of the program to perform the unsteady calculations.

4.1.1 Steady Calculations

The actuator-disc computer program is designed to

perform numerical integrations of five induced velocities
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simultaneously. This allows the simultaneous calculation

of induced velocities at a particular blade radial station

and azimuth position for five loading conditions. This

results in a considerable savings of computer time over

five sequential calculations. The induced velocities are

obtained at a particular azimuth position for all the radial

blade stations from the hub to the tip, after which the azi- V
muth position is incremented and the process repeated. The

direction of integration is the reverse of that shown in

equation (71). That is to say, the program is designed to

integrate from the disc to infinity. This process allows

the program to stop when the integrand becomes relatively

small.

The first step in the integration of equation (71) is

the transformation of the disc coordinates into ellipsoidal

coordinates. Simpson's 1/3 rule is used to integrate along

the streamline parallel to the X axis. At each point of

integration, a coordinate transformation is required, the

pm mpolynomials P (v) and Qn (in) are evaluated, and the deriv-

atives of the polynomials Pm and Qm are evaluated using
n n

the recursive forumulas of Appendix 7.2. Generally, the

program integrates to a final eta of 15 to 20 before the

integral converges. The P (v) and Q (in) polynomials aren n
calculated using double precision because, for n > 10, the

Q (in) oscillate about a zero-mean (rather than decaying)
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when only single-precioion is used. This is because the Qm (i)
n

contain the differences between two relatively large numbers,

which results in high round-off errors.

After a complete azimuth sweep, the induced velocities

are stored in a 3-dimensional array of size (A,B,S) where A

is the number of azimuth positions, B is the number of blade

radial stations, and the numbers 1 through 5 represent the

CT, CL, CM , C2L and C2M loading conditions respectively.

Due to the symmetry and antisymmetry properties of the poly-

nomials, the induced velocities are only calculated for

0 < V < 180. The induced velocities are then integrated in

the radial and azimuthal direction for each separate loading

condition in accordance with equations (75,76,77, and 78) to

obtain the SxS and 3x3 [L] matrix. Gauss Quadrature inte-

gration is performed in the radial direction and Simpson's

1/3 rule is used to perform the azimuthal integrations.

As mentioned in the previous section, for the special

case of steady, axial flow, the induced velocity on the

rotor disc is given by equation (72). For this case, the

induced velocity on the disc is the negative of the pressure

distribution. This yields an exact induced-velocity distri-

bution that is used for comparison with the induced-velocity

calculated by the integration of equation (71). Figure 7

depicts the results of varying the integration increment

along the streamline. This figure also depicts the Gauss-

point locations for 10 blade radial stations. It is obvious
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from this figure that the numerical integration becomes more

difficult for blade stations with r > .7. To calculate the

induced velocity close to the tip requires very small inte-

gration increments, while the increments can be considerably

larger in the inboard blade area. To take advantage of this

fact, the computer program uses a nominal integration incre-

ment of .05 for r < .7 and an increment of .01 for r > .7.

This results in a savings of computer time, without sacri-

ficing accuracy of the induced velocity calculations.

We now wish to discuss the numerical accuracy of this

program. Equation (72), when substituted into equation (75),

yields the exact value of the [L] matrix for the case of

a = 900. This equation can be integrated in closed form to

yield the L(l,l) element as 0.5. Thus, numerical experiments

were conducted with the exact induced velocity being used

to calculate the L(l,l) term. Figure 8 shows the results

of the various integration techniques used to integrate the

resultant induced velocity in the radial direction. (Note

that, for the case a = 900. the induced velocity attributable

to CT is only a function of the radial position.) Rectangu-

lar integration required the calculation of the induced

velocities at approximately 500 blade stations at one azi-

muthal position to obtain a deviation of .0001 from the

exact value of 0.5. The results with the trapezoidal rule

and Simpson's integration show that these require fewer
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blade stations to obtain L(l,l) with the same accuracy as

rectangular integration. Figure 8 shows that the method

of Gauss Quadrature gives an order-of-magnitude improvement.

This shows that Gauss Quadrature integration with 11 radial

blade stations will result in a deviation of only .0001 for

the L(l,l) term. This results in significant savings in

computer time, because the induced velocities can be

calculated at only a relatively few blade radial stations

for each azimuth position. Another significant advantage of

Gauss Quadrature is that the induced velocity is only eval-

uated at the Gauss point locations. This allows integration

in the radial direction from the hub to the tip without ex-

plicitly finding the induced velocity at the tip. This is

of great importance because the induced velocity (equation

(71)) has a singularity at the edge of the rotor disc,

n - v = 0. To obtain the [L] matrix, the induced velocity

has to be integrated in the azimuthal as well as the radial

direction, as defined by equation (75). Gauss Quadrature

is not convenient for the azimuth integration. Consequently,

Simpson's rule is employed with azimuthal increments varying

from 50 to 300.

The increment for the streamwise integration is de-

termined such that all the terms of the [L] matrix are cal-

culated with an adequate accuracy. Figure 9 shows that the

L(4,4) and L(5,5) terms, which are equal when a = 90° ,

converge at a slower rate than do the other diagonal
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elements. Consequently, the streamwise integration incre-

ment was chosen to give accurate answers for all tcrms oF

the [L] matrix with a minimum of computer time. (Excessive-

ly small increments result in excessive computer time.)

Typically, the azimuth increment must be decreased as

the rotor angle.of-attack, a, approaches 0* (edgewise flow).

This is because, as a approaches zero, the induced velocity

changes rapidly in the azimuthal direction since the disc is

in its own wake. The computer program was unable to calcu-

late the induced velocity at a ' 0 because the streamlines

coincide with the rotor disc and create singularities. How-
o

ever, a values as small as 0.2 were possible. The computer

time for the steady calculations ranged from 1-4 minutes

for a = 90 , At = 300 to 19 minutes for a =.20, Aq, = 50 . This

is the time required to calculate the induced velocity at

10 blade stations, at each azimuth increment, for all 5 load-

ing conditions. Both the [L] matrix and [LI-l are calcu-

lated for the 5x5 and 3x3 cases for the given angle of

attack during each computer run.

The actuator-disc computer program had the capability

of printing the induced-velocity and pressure distributions

at all radial and azimuthal positions for all five pressure

distributions. This was useful in debugging the computer

program, but was not implemented in the majority of the

computations.

.... . • Nl , t W N"'
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4.1.2 Unsteady Calculations

The computer code for the steady condition was extended

to perform the unsteady calculations of equation (97). The

in-phase induced velocities, w, and the out-of-phase in-

duced velocities, u, are integrated in the same manner as

the steady calculations except that the weighting functions,

cos(K&) and sin(KE) are included. The weighting functions

cause the function jZ, to oscillate as a sine or cosine

function. As the reduced frequency K is increased, the

frequency of oscillation also increases. This means that

the streamwise integration increment must decrease as K

increases. Consequently, computer time will increase with K.

The complex induced velocity is integrated over the rotor

disc to obtain the complex SXS and 3X3 [L(K)] matrices.

The program then inverts both the Sx5 and 3x3 complex

matrices [L(K)]. The magnitude and phase angle of each

element of [L(K)] -1 is then calculated. The inverted

elements of the 3x3 complex [L(K)] are compared with the

upper 3 rows and columns of the inverted Sx5 complex [L(K)J

matrix. The program also compares the inverted steady

3x3 and 5x5 [L] matrices with the real parts of the inverted

3x3 and 5x5 complex [L(K)] matrices. The imaginary terms of

the inverted 3x3 complex [L(K)] martix are also compared

with the imaginary terms of the upper three rows and columns

of the SxS inverted [L(K)] matrix. The complex pressure
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distribution and complex induced velocities are printed for

all azimuth and radial positions, if desired.

As with the steady case, a special case was used to

verify the complex induced velocity calculations. Equation

(93) was integrated on the disc in closed form to yield

the exact value of the apparent mass matrix [M]. The exact

values were used to check the numerical integration of the

complex induced velocities on the disc. The program was

found to give accuracy of .0001.

The program is designed such that a single program

performs either the steady or the unsteady calculation. If

the value of the reduced frequency, K, is zero, then only

steady calculations and results are obtained. The computer

time required for the unsteady cases is, of course, larger

than for the steady cases. The computer time varied from

6 minutes (for the case of K=0.1, ot=9 0*, and A=15*) to

2.5 hours (for K=300, a=90', and At=15 0). As the reduced

frequency K is increased, the streamline integration incre-

ment must be decreased in order to integrate the oscillating

functions of equation (97). To save computation time for

large values of K, an approximation is made to equation (97)

for values of E > 7. Equation (97) is approximated by a

sinusoidal decaying exponential function of the form
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f Z cos(KC)d- 
cosK&)d&

''sin(K )dr, - "A r sin(C)dE

The advantage of this approximation is that the integration

of the exponentially decaying function is evaluated in

closed form and added to the numberically integrated values

obtained integrating from the disc to 7.0. This approx-

imation results in a 40% savings in computer time with only

a 0.25% change in the complex induced-velocity calculations.

It should be noted that the 2.5 hours for K=300 reflects

the use of this approximation. As in the steady case, as

the angle-of-attack, a, is decreased, the azimuthal inte-

gration increments must also be decreased to account for

the more rapid azimuthal variation of induced velocities.

The computer time is 40 minutes for a=l.0*, 1=5 0 , and

streamline integration increments of .01 for r < .7 and

.0025 for .7 < r < 1.0 with the approximation being utilized.

4.2 PRESCRIBED-WAKE COMPUTER PROGRAM

The UTRC prescribed-wake computer program is a large

computer program, approximately 4000 lines of code, that

requires extensive input data. In addition to the normal

blade geometry, airfoil data, control settings, and flight
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conditions, that are used; some of the other input vari-

ables are number of wake revolutions, number of trailing

vortices with their radial locations on the blade, vortex

core size, tip roll up geometry, and prescribed-wake ge-

ometry. Due to the lack of prescribed-wake data, this last

feature was not employed in the research.

The blade geometry and characteristics of the rotor

tested by Kuczynski (54-57) were used as blade inputs. This

allowed us to compare the calculated thrust with actual

data. This also allows a direct comparison with the em-

pirical [L] matrix derived from this test data. Hover

calculations, for 6o = 10 and 60, showed very good agreement

with the measured data. During these hover calculations,

it was found that the thrust coefficient, CT, was sensi-

tive to the number of wake revolutions considered. The

best results were with 6 wake revolutions, but this re-

sulted in an increase of computer time to 8 minutes for a

given pitch setting.

The momentum induced velocity, vo, had to be estimated

prior to each run. A certain amount of trial and error was

required before the v0 input would agree with the calculated

CT. Equations (1) through (3) depict the relationship be-

tween v0 and CT. To help in the process the equations of

reference 3 were used to find o for hover and climbing

flight. Using these equations reduced the number of runs

required to trim. The equations of Wei and Peters (69)
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were also used to obtain values for eo , es and 6c in

forward flight.

The UTRC program had the capability to interpolate the

induced velocities at any number of points on the blade

station. Normally, the induced velocity and thrust were

calculated at the 9 radial stations of the trailing vortices.

The vortices are unevenly spaced with a significant concen-

tration at the tip to model the higher tip circulation of the

rotor. To improve accuracy, the induced velocities were

interpolated at 10 Gauss points. This allowed us to use

both Gauss Quadrature integration of the induced velocity

in the radial direction and rectangular integration in the

azimuthal direction to obtain Vo' V s, Vc" The load cal-

culations of equation (109) were performed using rectangu-

lar integration of the lift at the trailing-vortex

locations in both the radial and azimuthal directions.

To obtain the steady [L] matrix for one flight condition

required a minimum of 4 runs at different pitch settings. A

separate Fortran program was written to obtain the steady

[L] matrix by inverting the [F] matrix and performing the

matrix multiplication of equation (115).
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5. RESULTS AND DISCUSSIONS

The results of the research will be presented in the

following order: first, the steady, actuator-disc results

will be discussed. Second, the unsteady results will be

presented; and, third, the results of the prescribed-wake

research will be discussed.

5.1 ACTUATOR-DISC RESULTS

5.1.1 Steady Results

The actuator-dJc~c theory and program previously described

has been exercised to obtain the following results. The

steady 5x5 [L] matrix, its inverse, and the deviation between

the 3x3 and Sx5 inverted [L] matrices were calculated for a

range of alphas from 900 to 0.50. Calculations were made at

100 increments 400 < a < 900 and at 50 increments for

00 < a < 40*. The smaller increments were required to

sufficiently define the slopes of the curves near a = 0.

Each column of the 5x5 [L] matrix is presented for this

alpha sweep, figures 10-14.

Figure 10 depicts the first column of the [L] matrix

for both the corrected and uncorrected thrust distributions.

The shaded symbols represent the uncorrected thrust loading

(i.e. only C0 term in the pressure distribution). The star

symbols depict the exact results obtained for axial flight,

a - 900, and edgewise flight, a = 00, by closed-form inte-

gration of equations (72) and (73). Table 3 lists the closed
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TABLE 3

L-Matrix for Edgewise Flow'

Element Uncorrected Corrected Vortex Momentum
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form results (exact values) for both the uncorrected and

corrected pressure distributions for the case of edgewise

flow. These values are compared with the results of the

vortex and momentum theories of reference (60). The

L(l,l) term, vo due to CT, is 0.5 for the complete range of

alpha and is also independent of lift distribution. This is

the same value predicted by the momentum theory of reference

(63). The L(3,1) term, vo due to CT, is zero for the case

of axial flow (i.e. hover and vertical climbing flight).

As a approaches zero, the edgewise flight condition, the

L(3,1) term appears to have a linear variation as it

approaches the exact value. The uncorrected value of L(3,1)

is approximately 60% larger than the corrected value.

Interestingly, this term is zero for momentum theory, but is

present in the vortex theories. Because the L(3,1) term is

positive and greater than L(l,l) it implies that there is an

upwash at the front of the rotor. That is to say, since

cos(ip) is negative for 90* < < 2700, the resulting induced

velocity is negative indicating an upwash. This upwash has

physically been measured and is documented in references

(13 and 14). The corrected L(3,1) term is essentially the

K-factor used by Glauert to obtain a fore-to-aft linear

distribution of the induced velocity, equation (4). This

term is approximately linear with alpha and is identical to

the K determined by the simple vortex theory of reference

(9), as given in equation (6). The L(5,1) term is the second
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cosine harmonic of induced flow due to thrust, or V2c due

to CT.

Similar to L(3,1), the L(5,1) term is zero at a = 900

and displays a smooth transition to a = 00. However, it is

very interesting that L(5,1) changes sign as the thrust load-

ing is varied from the corrected thrust to the uncorrected

thrust distribution. This variation shows that L(5,1) is

heavily dependent on the lift distribution. The uncorrected

L(5,l) is always positive and increases in a more nonlinear

fashion than L(3,1). Because of the cos2p term, a positive

L(5,1) will yield a downwash (or positive induced velocity)

at the front of the disc. The harmonic induced velocity

perturbation v 2c due to an uncorrected thrust distribution,

L(5,l), is relatively large; and for a < 10° it is larger

than the average value of the induced velocity, vo. The

L(S,l) term for a corrected thrust distribution appears to

have the same general slope but with the opposite sign of the

uncorrected L(5,1). The corrected L(5,1) is negative for

all values of a up to a = 900 where it is zero. A negative

L(S,l) will yield an upwash at the front of the rotor disc,

because for p = 1800 cos2 is positive and a negative L(5,l)

will contribute a negative v 2c from equation (74).

In addition to the above numerical results, the

variation with a of the first column of the 5x5 [L] matrix

was obtained in closed form. Mangler in reference (70)
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developed Fourier components of the induced velocity due to

CT. Upon substitution of these values into equation (75)

with the indicated integration, the first column of the

[L] matrix can be determined. For the corrected lift

distribution, the results are

L(l,1) = 1
2v

L(3 1 7 -sina
L(3,) -64v sn

(117a-c)

- 1-sina)
L(5,1) - 3 1 i n'

7 v l+sina

For the uncorrected pressure distribution, the a variations

are the same as in equation (117); but the coefficients are

altered to match the c=0 ° presented in Table 3.

The second column of the 5x5 [LI matrix and its

variation with thrust distribution and angle-of-attack is

plotted in figure 11. The only non-zero terms for the

second column are L(2,2) and L(4,2). The L(2,2) term is

Vs, the sine variation of induced velocity, due to CL; and

L(4,2) is v2s' the second harmonic sine variation of induced

velocity, due to CL. Figure 11 shows a smooth transition

for L(2,2).and L(4,2) as a is varied from 900 to 00; with

all the curves approaching the exact values as a approaches

0*. The L(2,2) term is nearly independent of lift distri-

bution for a > 100; but for a < 10* a noticeable difference
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develops between the corrected and uncorrected values. The

uncorrected L(2,2) at a=0 represents a 100% increase from

its value at a=900 . The corrected L(2,2) shows an even

larger difference between its values at a=90* and a=0 0 .

Both the corrected and uncorrected L(2,2) are negative

throughout the complete a range. This is interpreted as an

upwash, or negative induced velocity, on the starboard side

of the rotor disc (=90*, sin9 0* = +1.0) and as a downwash,

positive induced velocity, on the port side (p=270 0 and

sin2700 = - 1.0) for a positive rolling moment. The L(4,2) term

has a dependence on lift distribution that is independent

of a. The corrected and uncorrect6 L\.',,2) are both zero

at a=90 ° and they increase nonlinearly as a varies from 90'

to 00. At a < 100 the magnitude of the uncorrected L(4,2)

is larger than that of the uncorrected L(2,2). At P=135*

the L(4,2) value is positive (sin2i=-i at tp=135*) and L(2,2)

is negative (sin=.707 at *=135 with the resulting induced

velocity from a positive rolling moment being positive at

this point on the rotor. This phenomenon is also apparent

at =2250 where the signs are reversed. This phenomenon is

not apparent for the corrected thrust case, where the L(2,2)

term is larger than L(4,2) for all alphas.
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Figure 12 gives the third column of the 5xS [L] matrix,

which is the induced flow due to pitching moment, C M. At

a-90* the L(3,3) term is -2.0, which is the same value as

L(2,2) for a-90 and is the same as predicted by momentum

theory. Thus, for the case of a=90* the L(2,2) and L(3,3)

terms are equal, which is to be expected due to the symmetry

of the airflow through the rotor for axial flight. The

L(1,3) is the average induced velocity, v0 ; L(3,3) is the

fore-to-aft induced velocity, vc; and L(S,3) is the second

harmonic of the fore-to-aft induced velocity distribution,

V 2c The corrected and uncorrected L(1,3) and L(S,3) terms

are zero at a=901. The L(1,3) term varies smoothly with a,

with a difference between the corrected and uncorrected re-

sults for a < 300 The difference between the corrected

and uncorrected L(1,3) is a maximum at a=0 where the corrected

term appears to have a linear variation; and the uncorrected term

becomesincreasingly nonlinear for a < 150. The (1,3) term

for a positive pitching moment will yield a positive average

induced flow, vo, which will add to the vo due to thrust

causing it to increase. The L(3,3) term is very interesting

in that it varies from a value of -2 at a-90 0 to zero at a=0.

This term has a smooth nonlinear variation that is indepen-

dent of lift distribution over the range of 30< a < 90&

For a < 300 the corrected value has a slightly larger abso-

lute value. However, both the corrected and uncorrected

L(3,3) values are zero at a=O. This means that there is no
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fore-to-aft or cosine component of induced velocity at a=0

for a pitching moment. L(5,3) is also zero at a=0 which

means that there is no second-harmonic variation of the

fore-to-aft gradient. The L(5,3) term varies from 0 at

am90* to 0 at a=0 0 with small negative values between.

This term shows a dependence on lift distribution, with the

absolute value being the largest at a=30* for the uncorrected

pressure distribution.

Figures 13 and 14 depict the effects of the second-

harmonic loading distribution on the induced flow. These

results can be used to determine if perturbations in the

higher-harmonic air loads will cause significant changes in

Vo V5s or vc and thereby invalidate one of the basic

assumptions of dynamic inflow theory. For the higher-har-

monic loadings, a single radial loading distribution was

used, (i.e., an uncorrected pressure distribution).

The fourth column of the 5x5 [L] matrix yields the in-

duced flow due to C2L which is a second-harmonic sine vari-

ation in load. The results for C2L are presented in figure

13. At a=90 the L(2,4) term is zero and L(4,4) is -3. The

term L(4,4) represents a second-harmonic of the side-to-side

induced velocity variation. Figure 13 shows a smooth vari-

ation of L(2,4) and L(4,4) with alpha. At a=O L(4,4) is

zero but L(2,4) is 2.577. It appears that the positive

L(2,4) will decrease the magnitude of vs (for a positive C1 )

because L(2,2) is negative. This effect is independent of c.
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The terms L(2,4) and L(4,4) vary nonlinearly with alpha,

both displaying increasing slopes as a is decreased from

900. The L(4,4) term is more steep and has a slightly

larger variation in its magnitude as a varies from 900to
00. The L(4,4) term, second-harmonic sine variation of

induced velocity due to sin21p loading, is zero at a of 0.

However, L(4,2) of figure 11, which is the second-harmonic

sine variation of induced velocity due to a sine loading,
0

is nonzero at a=0

Figure 14 depicts the fifth column of the [L] matrix,

which is the induced velocity due to a second-harmonic co-

sine variation of the pressure distribution. The L(1,S)

term, v0 due to C2M, is zero for all alpha. This is in

contrast to the L(1,3) term which is nonzero. The L(3,S)
0

term is observed to vary from 0 at a=90 to a maximum at
0 0

a-30. It returns to zero at a=0 This means that the

second harmonic cosine loading will result in a small

positive first harmonic cosine variation of the induced

flow, %.c The L(5,5) term is equal to L(4,4) at a=90° ,

which is expected due to the symmetry of the airflow. The

L(5,S) term has a smooth nonlinear variation with a and

appears to be of the opposite sign of the L(4,4) term.

Thus, as a approaches zero the magnitude of L(5,5) is in-

creasing to a maximum of -6 at a equal zero. This shows

that for the case of edgewise flight, there is a second

harmonic cosine variation of the induced velocity due to a
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second-harmonic cosine variation of the pressure distri-

bution. This is in contrast to L(3,3) and L(S,3) for edge-

wise flight, in that there is neither a first nor second

cosine variation of induced velocity due to a first-harmonic

cosine variation of the pressure distribution.

The inverse of the steady [L] matrix is required in

determining the unsteady induced velocities as given by

equation (32) and (106). Consequently, it is important to

determine the effects of the corrected and uncorrected pres-

sure distribution on the inverse of the [L] matrix.

Figure 15 is the first column of the inverted [L] matrix;

and for the steady case, {v) = 0, it represents the aero-

dynamic loading {F} due to v0  Figure 15 shows a smooth

transition for all terms from a= 900 to 0*. At c=90', all

terms are zero except the L[I,1] -1 term, which is 2.0. It

should be noted that for axial flight the [L] matrix is a

diagonal matrix with no cross-coupling terms. Consequently,

0
the inverse of the [LI matrix for a=90 is straight-forward

and is the reciprocal of each element of the [L] matrix.

The LllI -I term, CT due to vo, is dependent on the lift

distribution and has a nonlinear variation from a=90 ° to

a=0*; where the term is zero. The (3,1) term, CM due to

Vo' is also dependent on the lift distribution and appears

to be a linear variation from 0 at c-90* to its maximum at

a=0*. At a=0* there is considerable difference in the (3,1)

term for the corrected and uncorrected load distributions.
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Figure 16 is the second column of the inverted [L] matrix

and represents the loading due to v for the steady condition.
s

The L(2,2) -l term is shown to vary from a maximum at a=90° to

zero at a=0. There is little variation of L(2,2) term with

thrust distribution. The (4,2) term, however, shows some

dependence on lift distribution, except at c=0 ° and 900

where there is no difference. The (4,2) term is zero at

a=90 and increases smoothly to its maximum at a=0

The third column of the inverted [LI matrix is plotted
-i

in figure 17. The L(1,3) term shows a nonlinear variation

from 0 at a= 900 to a maximum at a=900 . A significant differ-

ence between the corrected and uncorrected values indicate
-I

this term's dependency on lift. The L(1,3) term is C
-1 T

due to v . The L(3,3) term is invariant with a and lift
c

distribution for practical purposes. The negative value

for this term indicates that a positive Vc, reflects a

negative C1. The L(5,3) term, C2M due to v c, is nearly zero

for all alpha with a slight variation for a < 30. In this
-1

same alpha range, there is a slight dependency of the L(5,3)

term on lift distribution.

The fourth column of the inverted [L] matrix represents

the aerodynamic loading, {F), due to v2s which is the second-

sine-harmonic of the induced velocity. Figure 18 is the
-1

fourth column of the inverted [L] matrix. Both the L(2,4)
-1

and L(4,4) terms are dependent on the lift distribution for

a < 600. The corrected thrust distribution results in larger
-1Labsolute values for both terms. L(2,4) , CL due to V i

2s

. ... . a -'
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zero at a=90 appears to vary linearly in the range;

40 < e 90 ; and becomevery nonlinear as r, approaches
-1

zero. The corrected L(4,4) term is seen to be extremely

0
nonlinear for a < 20 and appears to have an almost in-

finite slope at a=0. This term is C2L due to v2s.

The fifth and last column of the inverted [L] matrix

is presented in figure 19. It is apparent that the terms

in this column are essentially independent of thrust

distribution. The L(1,5) 1 term, C due to v andtem T deo 2c'ad

L(3,5) 1 , CN1 due to v2c' are zero at a=00 and ct=90, with a

somewhat symmetric variation between these angles-of-attack.
-1

The L(5,S), term C2M due to v2c' varies smoothly from a=90 °

0 0
to a=0 , with its absolute value being the largest at a=90

When inverting a nondiagonal matrix, changing the values

of some of the elements will affect the total inverted matrix.

As part of this research, the difference between the Sx5 and

3x3 inverted [L] matrices was investigated. The elements

of the 3x3 [L] matrix are readily obtainable by just elimin-

ating the fourth and fifth columns and rows of the 5x5 [L]

matrix. However, this procedure is not valid on the inverted

matrix due to the interaction of all the elements. Thus we

wish to compare the upper 3x3 portion of the two matrices.

Instead of showing the elements of the 3x3 inverted

[L] matrix, we show the deviation between the inverted 5x5

[L] matrix and the inverted 3x3 [L] matrix. The deviation

matrix is defined as
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D LAT(I,J) LS(,J) L 3(j (118)

1= 3

J=1,3
,J=l , 3

Figures 20 and 2] give the difference between the in-

verted Sx5 and 3x3 [L] matrices. It is apparent from both

of these figures that the deviation at a=90 0 is zero for all

elements and all loading conditions. Elements (1,1) and

(3,1) vary smoothly from 0 at u=90°to nearly zero at a=0

with a maximum deviation occurring at ci=20. The absolute

values of the corrected (1,1) and (3,1) terms have a larger

deviation than the uncorrected values. The L(1,3) and

L(3,3) terms plotted in figure 21 have a shape similar to

the elements of the first column shown in figure 20. How-

ever, for the (1,3) and (3,3) terms, the absolute valuesof

the corrected distributions are larger than those of the

uncorrected. This is opposite to that shown in figure 20.

The (2,2) element results in the largest deviation between

0
the inverted 3x3 and 5x5 [L] matrices; for the case cx=0 and

an uncorrected loading. It should be noted that neither the

3x3 nor SxS inverted matrices are singular, and all elements

display smooth variations with cx.

... . - -- --- .I~i,: , _ , .. , .-
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5.1.2 Unsteady Results

In this section, the properties of the inverted com-

plex [L] matrix will be examined. The complex [IL matrix

was calculated as described in the previous sections, con-

sidering the two different solution techniques of Super-

position of Velocities (S.V.) and Superposition of

Pressures (S.P.). The significance of the results to he

presented in this section is that a true rotor should be-

have somewhere between the two theories. Thus, the results

will represent an upper and lower boundary of the dynamic

inflow model.

The first case to be presented is the case of axial or

hovering flight. The unsteady effects of axial flight have

been fairly well documented by previous analyses and tests.

Both the complex [L(K)] matrix and the inverted complex

[L(K)] "1 matrix are diagonal matrices for a=90*. This is

advantageous in that none of the elements are coupled,

meaning that each element is straightforward and indepen-

dent of the other elements. Figures 22-24 give comparisons

of the imaginary parts of the diagonal element of the in-

verted complex IL] matrix as calculated by each method.

These figures depict both the corrected and uncorrected

load distributions. As mentioned in section 3.1.2,

equation (93) is evaluated in closed form for the special

case of v=O, a=90 0 to obtain the apparent mass terms. The

results of this closed-form apparent mass calculation is
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given in Table 4. Several points are noteworthy. First,

the uncorrected values of Mll, M2 2 , and N33 are identical

to the values obtained by Peters (63) who used potential

theory to determine the apparent mass of an impermeable

disc. Second, there are significant differences between

the apparent mass for corrected and uncorrected lift

distributions. Therefore, the apparent mass terms are more

sensitive to pressure distributions than are the steady

terms. Third, the apparent mass terms decrease with in-

creasing harmonics of induced flow, v. The apparent mass

terms of Table 4, both corrected and uncorrected, are used

in obtaining the inverted complex [L] matrix by the super-

position of pressure (S.P.) theory.

From comparing figures 22 through 24, it is apparent

that all elements of the complex [L] matrix are zero for a

reduced frequency of zero. The reduced frequency, K=u)/v,

is defined as the ratio of the rotor oscillating frequency,

w, to the free-stream velocity-ratio, v, of the rotor. The

(1,1) term is always positive and all other terms are

negative. At relatively large reduced frequencies, K - 300,

the S.V. and S.P. give the same results. The rate of con-

vergence appears to be independent of thrust distribution or

of harmonics of the induced velocity. The latter statement

implies that the rate of convergence for all elements is

about the same. Comparison of the imaginary values of each

element of the matrix at K=300 verifies the closed-form
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result that stated that the apparent mass terms decrease with

increasing harmonics of v. It is interesting to note that

the uncorrected thrust distribution results in a larger

imaginary term for figures 22 and 23 than does the corrected

thrust distribution. A comparison of the two solution

techniques shows that the largest absolute differences are

in the range 50 < K < 200. The difference between results

of the two solution techniques appears to be the same for

either the corrected or uncorrected load distribution.

Finally, for a reduced frequency in the range of 0 < K < 20

the differences between the solution techniques is small,

although the percentage difference is large. This can be

seen more clearly in the apparent mass terms.

The apparent mass for either solution technique can be

obtained from the ratio L'1(K)/K in figures 22-24. Thus K

times each apparent mass term will yield the imaginary part

of the inverted complex L-matrix. A comparison of the

apparent mass terms as calculated by each solution technique

is presented in figures 25-27 for the case of axial flow.

Due to the symmetry of the airflow through the rotor for

axial flow, a=900 , the M(2,2) and M(3,3) terms are equal

and the M(4,4) and M(5,5) terms are also equal. Figures

25-27 give a comparison of the relative magnitude of the

apparent mass terms. It is seen that the M(1,1) term is

larger than the M(2,2) and M(3,3) terms which, in turn, are

larger than the M(4,4) and M(5,5) terms. The M(l,l) term is

I _ _
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positive and the other terms are negative. It is interesting

to note that the apparent mass terms due to the corrected

pressure distribution are always smaller than the apparent

mass associated with the uncorrected pressure distributions.

This can possibly be explained by the fact that with the

corrected pressure distribution the lift tends towards the

edge of the disc, while for the uncorrected pressure distri-

bution it tends towards the hub. The apparent mass elements

calculated by the S.V. method asymptotically approach in-

finity as K approaches zero. This is exactly analogous to

the case for an unsteady wing in which the log (K) term in

the Theodorsen function given an infinite slope at K=O,

Ref. (71). However, as K is increased, the apparent mass

calculated by the method of S.V. exponentially

approaches the apparent mass calculated by the S.P. method.

At a reduced frequency of K=300, figures 25-27 show that the

apparent mass of both methods agree. Even though there is a

large difference in the apparent mass terms calculated by

the superposition of pressures and velocities in the K < So

range, the reduced frequency is small and consequently the

imaginary terms are relatively small, and the effects of the

different apparent masses are not great.

To better understand the difference between the inverted

complex L-matrix as calculated by S.P. and S.V. methods, it

is good to compare the magnitudes and phase angles of the



-120-

APPARENT MASS - M(4,4) I'I(S,S)

-------- SUPERPOS. OF VEL.
SUPERPOS. OF PRESS.

"- -- - - - -- ............Figure 27.

Apparent Mass
Elemcnts P.1(4,4)

-0.6 and M(5,5) for
- = 900

-0.083- . . I ... I . . .I . . .i ' ' I .. .. 0

O s 10 150 200 2s 300
REDUCED FREQUENCY - K

------- *REAL
--------- IMAGINARY
............ SUPERPOSITION OF PRESSURES

O 0 SUPERPOSITION OF VELOCITIES

03

Figure 28.
Magnitude of the NAG. CPMPLX LINU(1,I)
(1,1) Element of CORRECTED
Inverted Complex /

L(K) Matrix at
a = 900 with 102
Corrected Pressure

X'
0/

10-

r0 ..

1 II 1l 1 I I 1III5111 1 1 14111112a I I I IIT11,

10"D C 10 10 -0K
REDUCED FREQUENCY - K

• . .. .... .... . . I



-121-

complex elements for each method. The magnitudes of the

elements of the inverted complex L-matrix are presented in

figures 28-32. The magnitudes are given on a log-log graph

for both the corrected and uncorrected pressure distributions

for the case of axial flight. (We recall that the (4,4) and

(5,5) elements are always uncorrected.)

Figure 28 presents the magnitude of the (1,1) element

of the complex L-matrix as calculated by each theory for a

corrected thrust distribution. The magnitudes were plotted

on a log-log scale, because this affords the capability to

compare magnitudes at both high and low K values without

masking small differences. The S.V. magnitudes are for

discrete K values over the range of interest, .1 < K < 300.

The S. P. magnitudes are obtained from the square root of the

sum of the squares of the real and imaginary terms. The real

part, shown on the figure as a dot-dashed line, is the (1,1)

term of the inverted steady L-matrix for a=90'. This value

can be obtained from figure 15. The imaginary term for the

S.P. method, shown on the figure as the large dashed line,

is the apparent mass M(1,1) multiplied by the reduced

frequency K. The combined magnitude of the real and imaginary

parts are shown as the dotted line. It is interesting to

note that when the lines of the real or imaginary component

coalesce with the magnitude line, then the respective

component is predominantly larger than the other term. For

example, in figure 28 for K < .3 the real part dominates

and for K > 30 the imaginary part dominates. The maximum
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difference between the S.P. and S.V. theories is for the case

of corrected thrust loading in the range of 1 < K < 10.

At K = 3, the difference is close to a factor of 2.0. There-

fore, we conclude that either theory may deviate by + 30%

from the true value at K = 3. Although this is disappointing,

especially since this is in the range of most interest, we

recall that the effect of dynamic inflow is itself a correction

factor. Thus, errors of 30% in a correction term may be

acceptable. Figure 29 gives the (1,1) term for uncorrected

thrust, and it appears to have a closer agreement between the

two theories than does the corrected. For axial flight, the

real part for the corrected and uncorrected thrusts are the

same. However, there is a difference in the apparent mass

(i.e. complex part) of the L inverse matrices. Comparing

figures 30 and 31, one can see that the uncorrected pitch

and roll moments yield better agreement between the S.P.

and S.V. Since most uses of dynamic inflow (such as air

resonance) are primarily roll and pitch, this is further

justification for the adequacy of dynamic inflow theory.

These figures also show difference in the slopes of imaginary

components (of the S.P. theory) between the corrected and

uncorrected pressure distributions. This is due to the

difference in apparent mass. Figure 32 shows very good

agreement between the two solution techniques for the 2/rev

elements but it also shows that these are smallest of all

the elements. The good correlation for the (4,4) and (5,5)

term is tempered by the fact that these terms are manifested
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by the second-harmonic pressure distribution, which for real

rotors is of a secondary effect.

To fully understand the behavior of the inverted complex

L-matrix, it is beneficial to look also at the phase angle

variation of each element as a function of reduced frequency.

The phase angle can be considered to be a time lag between

the in-phase and out-of-phase induced velocities. Figures

33 - 37 present the phase angle of all nonzero elements of

the inverted complex L-matrix at a = 900. The phase angles,

similar to the magnitudes, are plotted for varying reduced

frequencies in the range of .1 < K < 300 and for both the

corrected and uncorrected pressure distributions. It should

be noted that these are semi-log plots with reduced frequency

being plotted on a logarithmic scale. For ease of comparison,

the phase angles of both solution techniques, Superposition

of Pressures (S.P.) and Superposition of Velocities (S.V.),

are presented on the same figure. The phase angle is the

arc tangent of the ratio of the imaginary part to the real

part. For the S.P. method, the real part is the inverted,

steady L-matrix and the imaginary term is the apparent mass

multiplied by the reduced frequency. We recall from the

results of section 5.1.1 that, for a = 900, the real term

is independent of thrust distribution. Therefore, the

difference in the S.P. phase angles between the corrected

and uncorrected pressure distributions is due to the differ-

ence in the apparent mas's for these two distributions. The

phase angle for S.V. is defined as the arc tangent of the
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ratio of the imaginary part to the real part of the inverted

complex L-matrix obtained by integration of the complex

induced velocities of equation (97).

Figure 33 presents the phase angles for the (1,1)

element for the corrected thrust distribution. This figure

shows that for K < 5 that the phase angles calculated by

the S.V. method are larger than the S.P. phase angles. This

trend is reversed for K > 11 where the S.V. phase angles are

smaller than the S.P. phase angles. The two techniques agree

at a reduced frequency of approximately S. It is interesting

to note that at K = 300, the phase angles of the S.P. and

S.V. differ by approximately 5 degrees, although figure 28

shows that the magnitudes of the two methods agree at this

point. It can be noted that, at the higher reduced-frequency

range, the slopes of the S.P. and S.V. phase angles differ

slightly. Since the real part of the S.V. phase angle is

larger than the real part of the S.P., which is itself

constant for all K, one would expect the curves to be nearly

parallel and the slopes to be equal for high reduced frequen-

cies. However, the slopes appear to be different. This can

be explained by the fact that the real part of the S.V.

technique is becoming increasingly larger for an increasing K.

(This will be shown later) The above comments are also

applicable to the phase angle due to the pitch and roll moments

shown in figure 35 and the phase angle from second-harmonic

load distribution shown in figure 37.
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The phase angle comparison for the uncorrected thrust

distribution is dcpicted in figure 34. The uncorrected S.P.

and S.V. phase angles have a better correlation than the

phase angles for the corrected pressure distributions. A

comparison of figures 33 and 35 with 34 and 36 shows that

the S.P. phase angles for the uncorrected pressure distri-

bution are almost identical to those of the corrected

distribution, except that the former are shifted to the left.

That is to say, that for a given K the uncorrected S.P. phase

angles are slightly larger than their corresponding corrected

phase angles. This is to be expected, because the S.P. real

term is independent of pressure distribution for a = 900 and

the S.P. uncorrected apparent mass is larger than the corre-

sponding uncorrected terms. Thus, the only difference between

the S.P. phase angles for the correct and uncorrected

distribution is due to the different apparent mass terms.

For the S.V. method, there is a definite change in the slope

and magnitude of the phase angles calculated for the corrected

and uncorrected pressure distributions. This would imply

that the real and imaginary parts of the S.V. inverted

complex L-matrix are dependent on the radial load distribution.

Finally, the closest agreement for the S.P. and S.V. phase

angles are shown in figure 37 for the second-harmonic pressure

distribution.

Up to this point, the unsteady results presented are

for the axial flow case. A major part of this research is to

determine the comparison of the complex interved L-matrix

--- *-
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obtained by S.P. and S.V. as the angle of attack varies

from a = 900 to a = 0. The inverted complex L-matrix

obtained by the S.P. method consists of the superposition

of the inverted steady L-matrix and the apparent mass matrix.

The apparent mass matrix, as given in Table 4, is a diagonal

matrix that is independent of the rotor angle-of-attacV and

is the complex part of the inverted matrix. The real part

is the inverted steady L-matrix, which varies with angle of

attack. This variation was discussed in the steady results.

The inverted complex matrix obtained by the S.V. method is

found to vary with angle-of-attack. The inverted 5 X 5

complex L-matrix has the following nonzero elements; (1,1),

(3,1), (5,1), (2,2), (4,2), (1,3), (3,3), (5,3), (2,4), (4,4),

(1,5), (3,5) and (5,5). It would be quite lengthy to discuss

the magnitude, phase angle, imaginary component, and real

component of each of the 13 elements of the complex inverted

L-matrix. Consequently, only the first column, elements

(1,1), (3,1), and (5,1) and their variation with alpha will

be discussed in detail. However, data and figures for the

other elements are presented as supplemental data in Appendix

7.4. Furthermore, most of the comments about the elements

in the first column also pertain to the figures in Appendix

7.4. The following data is based on a corrected pressure

distribution unless otherwise noted.

The magnitudes as calculated by S.V. method are presented

in figures 38 - 40. The magnitude of the (1,1) element is

shown to vary slightly with angle-of-attack is figure 38.
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The magnitude decreases by a constant value for all values

of K as a decreases. We also note that, at K = 0, the

magnitude of the (1,1) element approaches zero as a approaches

zero. This agrees with the steady inverted complex L-matrix

of the S.P. method, shown in figure 15. We have previously

discussed the comparison of the S.P. and S.V. for the (1,1)

elem.nt at a = 900. As a varies, the S.P. varies as the

inverted, steady (1,1) element with the addition of the

apparent mass effects. Figure 39 displays the magnitude of

the (3,1) element as computed by the S.V. method for the a

sweep. At a = 900, both the S.P. and S.V. methods predict a

magnitude of zero. As angle-of-attack is varied, the magni-

tude of this off-diagonal element of the S.P. complex,

inverted L-matrix possesses only a real part, which is the

inverted steady L term. Thus, at K = 0, the magnitudes

predicted by the S.P. and S.V. are the same. As K increases,

the magnitude of the S.P. remains constant and is a horizontal

line drawn from the K = 0 point. (Note this line is not shown

on figure 39 and 40 for sake of clarity). Interestingly,

there seems to be a decrease in the magnitude of the (3,1)

term for S.V. at K S. Also, the magnitude is seen to have

a linear increase for all a as K increased beyond 10. This

increase ii magnitude implies that either the real or imaginary

or possibly both parts are increasing. Figure 40 depicts the

magnitude of the (5,1) term for various values of a. The S.V.

0 0 0
magnitude ata = 90, 60, and 30 agrees well with the S.P.

magnitude (K = 0). It is noted that the S.V. magnitude for
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0a ° S displays numerous peaks. Originally, the computer

runs were made at a = 10, however, the peaks were more

prominent and pronounced. It is felt that the peaks are

due to the rapid azimuthal variation in the complex induced

velocity, combined with the numerical difficulty of

integrating the oscillating streamwise functions. To verify

this assumption, the complex induced velocities are plotted

along the longitudinal and lateral rotor axis, figures 41

and 42. Both the unsteady induced velocities and the steady

induced velocities are shown in the figures. A comparison

of figures 41 and 42 shows that the unsteady induced velocities

have oscillating lateral and longitudinal induced-velocity

distributions. This oscillatory, induced-velocity field

(combined with rapid azimuthal changes), increases the

difficulty of the numerical integration of the complex L-

matrix. It is also interesting to compare the magnitudes

of the (1,1), (3,1) and (5,1) terms at K = 30. It is

obvious that the relative size of the (1,1) term is larger

than the (3,1) which is in turn, larger than the (5,1) term.

The effects of the a sweep on the phase angles of the

first column of the inverted complex L-matrix are presented

in the figures 43 - 45. Figure 43 shows the phase angle

variations of the (1,1) term. The comparison of the phase
0

angles obtained by the S.P. and S.V. methods at a = 90 has

already been discussed and is given in figure 33. As the

angle-of-attack is varied, only the real part changes

in the S.P. method. Therefore, the phase angles for the
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S.P. method are virtually independent of a. It is also seen

that the S.V. phase angle of the (1,1) term increases slightly

as a decreases. There is little difference between a = 900

and = 600, and there is only a 5 degree difference between

a - 300 and a = S0 at K = 30. The case for = S0 appears

to have a few peaks. At K = 30, the phase angle appears to

lie between 70 and 80 degrees for all a-values calculated.

Figure 44 shows the phase angle for the (3,1) term. The

phase angles for the S.P. method is zero over the complete

a and K range for all the nondiagonal elements of the

inverted complex L-matrix. The phase angle for S.V. is also

zero for a = 900; but, for all other values of a, the phase

angle appears to approach 400 at K = 30. Interestingly, this

is approximately 1/2 of the (1,1) phase ancic at K = 30. The

most noticeable aspect of figure 44 is that the phase angle

changes sign and passes through zero at a reduced frequency

of 4. This would indicate that either the real or imaginary

part of the (3,1) term changes sign in this region. The phase

angle of the (5,1) term is presented in figure 4S. This

figure shows that the (5,1) phase angle also varies with K

and a. At a = 90, the phase angle is zero which again

implies that the S.P. and S.V. method give the same results

at a = 90. However, for all other a, the S.V. method predicts

a phase angle which changes sign twice and passes through

zero at both K = 4 and K = 8. The (5,1) phase angle is

20 degrees at K - 30 and appears to be independent of a. The

value of 20 degrees is about 1/2 of the (3,1) phase angle and

1/4 the (1,1) phase angle at K = 30.
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The imaginary parts of the first column of the inverted

complex L-matrix are presented in figures 46 - 48. Figure

46 depicts the S.V. complex part of the (1,1) term for the

a sweep of 90 to 5 degrees. It should be noted that the a

= 90 curve can be compared directly to figure 22 in order

to determine the difference between the complex parts as

predicted by the S.P. and S.V. methods. In accordance with

the assumptions of the S.P. method, the (1,1) term is

independent of a; and the (3,1) and (5,1) terms have no

imaginary part. However, from figure 46, it is noted that

the S.V. imaginary term shows a slight decrease in value

for a decreasing angle-of-attack. We assume that the

imaginary part is determined by the apparent mass times the

reduced frequency. Thus, the apparent mass for M(l,l) is

slightly dependent on rotor angle-of-attack. We also note

that for a = 5 there are several small peaks, which are

attributed to the rapid change of the induced velocities at

low angle-of-attack. The imaginary part of the (3,1) term

is given in figure 47. The (3,1) term is observed to change

sign and pass through zero at approximately K - 4. For the

imaginary part to be equal to zero means either K is zero or

the apparent mass is zero. Thus, the (3,1) apparent mass is

equal to zero at K - 4 for all angles-of-attack. As the

angle-of-attack decreases, the imaginary part is observed

to increase. The slope of the imaginary curves at K - 30

is small, which implies that the apparent mass term is small.

Figure 48 shows that the imaginary (5,1) term changes sign

twice and passes through zero at K = 4 and K = 8. This means
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that, at K = 4 and K = 8, the apparent mass NM(5,1) is zero

and is independent of a. We also note that, as a decreases

from 900, the imaginary terms increase. From the slope of

the curves at K = 30, the apparent mass term, M(5,1) must

be fairly small.

The real part of the inverted complex L-matrix as

determined by the S.P. method is just the inverted steady

L-matrix. In contrast, the real part of the S.V. inverted

complex matrix is obtained by inverting the unsteady L-

matrix that is obtained by integration of the complex induced

velocities on the rotor disc. Figures 49 - 51 depict the

deviation between the real portion of the inverted complex

matrices (S.P. and S.V.) for various angles-of-attack.

Figure 49 shows the deviation for the (1,1) term, and the

deviation is shown to increase for increasing K. This

means that the real part of the S.V. (1,1) element is

dependent on K, whereas for the S.P. method, it is assumed

to be independent. The (1,1) deviation is shown to decrease

as alpha is decreased from 900 The fact that the steady,

inverted (1,1) term varies from a maximum of 2.0 at a = 90°

to zero at a - 0, implies that even though the relative size

of the deviation decreases with a, the percent error is

increasing. The deviation of the (3,1) term is shown in

figure 50. It changes sign and crosses through zero as K

is increased. As a decreases from 90, the relative deviation

at K - 30 increases. Figure Sl depicts the deviation of the

real part of element (5,1). For a > 30, the (5,1) deviation
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is small and almost independent of reduced frequency. The

largest deivation for the (5,1) term is for a = 5 and the

deviation appears to be constant for K > 18.

For the case of axial flight, a = 900, the inverted

complex L-matrix obtained by either the S.P. or the S.V.

method is diagonal. Consequently, there was no difference

between the inverted 5 X 5 and 3 X 3 matrices. Figures 52

and 53 compare the imaginary parts of the (1,1) and (3,1)

elements of the 5 X 5 and 3 X 3 S.V. inverted complex L-

matrix. The figures show that there is little difference

between imaginary parts for the 3 X 3 or 5 X S matrices.

The imaginary part of the complex L-matrix is large at K = 30,

yet the difference is less than 0.1. For K < 10, there are

some more spurious peaks with the largest being for a 5

Even with these peaks, the deviations are relatively small.

In reference 71, an analytic 3 X 3 L-matrix and apparent

mass matrix was suggested, based on preliminary results of

this research. These matrices are presented in Table S. The

rational for the development of these elements will be

addressed in Section 6. However, it is important to note

that the first column of the M-matrix is for a corrected

pressure distribution, while the second and third columns

are for uncorrected pressure distributions. We will now

discuss the results of using the analytical 3 X 3 M-matrix

and L-matrix in the S.P. formulation and the subsequent

comparison to the 3 X 3 S.V. matrices. Figure 54 compares

the relative magnitudes of the S.V. (3,1) and (1,3) ratioed



-145-

....ALPHA a 90. DEGREES
-- ----- ALPHA e 60. DEGREES
---- ALPHA a 30. DEGREES

ALPHA - 5. DEGREES
e.6 - -

UNSTEADY DMAT(3,I)

0.-4 Figure 53.
Deviation of the

D Imaginary Part
E . of Element (3,1)

I for the S.V. 5X5
A 1.\and 3X3 Complex

x e~ ~ ~Inverted L(K)
0 Matrix for a
Hi N Sweep (Corrected

Pressure
Distribution)

-6.2 '~ REDUCED FREOUENC - K SE~Uw~'RiU

*---MAG. CMPLX V13/IV )

Figure 54. Relative
Magnitude of the MIXED MODE
Off-Diagonal Terms 08
of the 3X3 Inverted
Complex LSK) Matrix
at a 30 0.6-

0.4-

REDUCED FREQUENCY - 9



-146-

TABLES5

Analytic Forms of L-Matrix
and M - Matrix

o 15 1-s ina

0 6in 4 +si nl u

-46

M0 0



-147-

to the (3,3) element for a 300. The ratio of magnitudes is

also presented for the S.P. theory in figure 54. This ratio

gives an absolute measure of the magnitude of the off-diagonal

terms in comparison with the diagonal elements. The relative

magnitude of the off-diagonal terms is shown to decrease for

increasing K. This not only tells us of the importance of

the off-diagonal terms but is also a direct comparison of

the S.P. method, for which off-diagonals are assumed to be

real and have no imaginary part; with the S.V. method, the

elements which have both real and imaginary terms. Figure

54 shows qualitative agreement between the two theories. It

is interesting to note that the S.V. calculations are not

symmetric as are those of S.P. Figures 55 and 56 show the

phase angles of the ratio of the off-diagonal to the (3,3)

element as calculated by S.P. and S.V. For a = 900 both

figures show good correlation of the phase angles. However,

for a = 30 the correlation is poor with the general shape

of the curves being similar but with a discrepancy in the actual

values. Lastly, it is interesting to note the phase angles

predicted by the S.V. method are not symmetric. In fact,

the phase angle in figure 56 changes shape radically in the

range 2 < K < 6.

5.2 PRESCRIBED-WA.:E RESULTS

The results of the 3 X 3 Prescribed-Wake (PW) L-matrix

are presented in figures 57 - 59. The rotor characteristics

are the same as those tested in references (54 - 57). The

rotor moves with respect to still air at 20 ft/sec and the
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tip speed is 216 ft/sec. The L-matrix is calculated at the

following angles-of-attack: 900, 600, and 300. However,

the effective angle of attack is a function of the steady

rotor thrust and inflow conditions. The effective angle-of-

attack is given in reference (71) as

a* = tan- I  + % (119)

For a helicopter in forward flight, a* is generally larger

than 6 degrees. The effective angle of attack was used in

plotting the PW L-matrix of figures 57 - 59. In these figures,

the 300 and 600 cases are shifted to the right because thc

----- L(l,i) A L(1,1) WAKE

L(3,1) COPR. 0 L(3,1) WAKE
-------- L(3,1) UNCORR.

1.5

1.O.

0---------- w;..- -7------ ------

20 40 60 se lee

DISC ANGLE OF ATTACK - DEG

Figure 57. First Column of the Prescribed-Wake L-Matri:
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effective angle-of-attack of thrusting rotor is larger than

the geometric angle-of-attack.

The L-matrices generated in this section require 4

prescribed wake calculations for each a. First, a baseline

case is run for a typical control setting. Second, the

controls (0 , 0 , 9 are varied sequentially. For each

variation, the change in v0 op s Vc' CT9 CL) and CM is noted.

A linear inversion then gives L, as described earlier.

The first column of the PW L-matrix is presented in

figure 57. In this figure the steady Actuator Disc (AD)

L-matrix is presented as dotted/dashed lines. The (AD) L-

matrix is presented for both the corrected and uncorrected
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thrust distributions. The PW (1,1) term is shown to he

relatively constant for all a, and shows excellent agreement

with the AD (1,1) term (6% error). It should be remembered

that the AD (1,1) term is independent of either thrust

distribution or rotor angle-of-attack. This excellent degree

of correlation is amazing, when it is remembered that the

PW integration of induced velocities and air loads is

crude with respect to: assumed constants, assumed lift,

and constant induced velocity for the rectangular integration

scheme in the radial direction. The PW L(3,1) term also shows

good correlation with the corrected AD values. The shift in

angle-of-attack, a*, is seen to play an important role in

aiding the correlation.

Figure 58 is the second column of the prescribed-wake

L-matrix, which is the induced flow due to a rolling moment.

(The Actuator-Disc Theory predic'ts that the corrected and

uncorrected (2,2) terms should be equal for a > 2!"). The

PW L(2,2) term shows excellent agreement in this range. The

third column of the PW L-matrix, induced flow due to a

pitching moment CM, is presented in figure 59. The (1,3) and

(3,3) terms also show excellent agreement with both the

magnitudes and slopes of their respective actuator disc

values. In the range of the prescribed-wake data, the

corrected and uncorrected moment distributions have little

effect on the AD L(1,3) and L(3,3) terms. It appears that

the PW L(3,3) is approaching zero for the case of edgewise
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flight. The PW L(2,1) and L(1,2) terms are less than (LOS

for all cases, and are essentially zero as predicted by thc

AD theory.

Most of the dynamic-inflow theories to date, including

the Actuator-Disc Theory developed during this research,

predict that the (3,2) and (2,3) terms of the L-matrix are

zero for all a. The (3,2) term is vc'cosine or fore-to-aft

induced velocity, due to C L (rolling moment); and the (2,3)

term is 'vs, sine component of induced velocity, due to CM

(a pitching moment). Nonzero values or cross-counlinp terms

-L(1,3) CORR. iL(1,3) UAKE
- - L(3.3) CORR. r L(2,3) UAKE

L(1,3) UIICORR. -^L(3,3) UAKE
----- U(33) UNCORR.

21-

9 20 40 60 SO 100

DISC ANGLE OF ATTACK DEG

Figure 59. Third Column of the Prescribed-Wake L-Matrix
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are predicted by the prescribed-wake theory, and are shown

in figures 58 and 59. Both terms appear to be constant with

respect to a. It is interesting to note that L(3,2) is

approximately -0.2 and that L(2,3) is 0.2. Thus, L,(2,3)

= -L(3,2) for the prescribed-wake L-matrix. This is

qualitatively similar to the empirical model, reference

(60), in which L23 = 32 is found at low a.

The natural explanation of these coupling terms is that

they represent the induced velocity caused by the rotor -

wake rotation. Bramwell (72) states that the rotation or swirl

velocity is due to the bound circulation about the blades

and the circulation due to the spiral vortex lines forming

the slipstream. Bramwell relates the swirl velocity to

disc loading and shows that the velocity caused by the wake

rotation is small when compared to the other induced velcoity

terms. The PW L(3,2) and L(2,3) terms are small with respect

to the other numbers in the column as seen in figures 58 and

59. Because the swirl velocity is a function of the rotor

disc loading, it is felt that the PW L(3,2) and (2,3) terms

will vary slightly with thrust. The value of swirl angle

required to produce these terms is about 60, which is the

same order-of-magnitude as the swirl angle for this case.

~ /
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6. CONCLUSIONS AND RECOMMENDATIONS

The inflow models used in this research consist of:

(1) Steady Actuator Disc-Corrected and Uncorrected

radial load distribution.

(2) Unsteady Actuator Disc-Superposition of Pressure

(S.P.) for both the corrected and uncorrected radial load

distributions.

(3) Unsteady Actuator Disc-Superposition of Velocities

(S.V.) for both the corrected and uncorrected radial load

distributions.

(4) Unsteady Actuator Disc-Analytical 3X3 L and M

Matrices.

(5) Prescribed-Wake Model

The induced-velocity distribution for each inflow model is

numerically integrated over the rotor disc for three

independent pressure distributions to obtain the L-matrix.

Models 1 - 3 provide both a standard 3X3 nonuniform inflow

L-matrix, and an extended 5X5 L-matrix that includes second-

harmonic velocities and loadings. The fourth model represents

an analytical formulation of induced flow based on the results

of models 1 - 3. The fifth model includes wake contraction,

wake rotation, and finite number of blades. Thus, it serves

as a measure of accuracy for the simpler, actuator-disc

models.

6.1 CONCLUSIONS CONCERNING TIHE STEADY, ACTUATOR-DISC MOI)!L

Some of the more important conclusions of the t(,add

actuator-disc research are:
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(1) The steady, actuator-disc theory for dynamic

inflow is based on the Mangler-Squire Theory. The induced

velocities calculated by the Mangler-Squire Theory are shown

to agree with measured results of reference (12).

(2) In axial flow (e.g. hover), the gains (elements of

the 3X3 L-matrix) are identical to those obtained from simple

momentum theory, and are independent of the radial lift

distribution.

(3) The fore-to-aft induced velocity gradient (L(3,1)

in dynamic inflow (or K in Glauert Theory) varies with a

in the same manner predicted by the wake skew angle formula

of simple vortex theory.

(4) Closed form results are obtained for all elements

of the L-matrix at a = 900 (axial flow), for all elements

of the L-matrix at a = 00 (edgewise flow), and for the first

column of the L-matrix at all angles-of-incidence, a.

(5) For a thrust loading and edgewise flow, the

cosine harmonics of induced velocity, L(3,1) and L(5,1), are

large with respect to the average value L(1,1). For the

other loading conditions, at a = 09 all the higher harmonic

elements of the L-matrix are small save for L(5,5).

(6) Numerical results for the elements of L at angles-

of-incidence from 00 to 900 show that they are not strongly

dependent upon lift distribution for 100 < a 900, although

significant dependence does occur for a < 100.

(7) A 3-degree-of-freedom dynamic-inflow model is

probably adequate for rotary wing dynamics.

* J. ~
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(8) Both the 5X5 and 3X3 steady L-matrices are well

behaved and invertible as a varies from 900 to 00.

(9) The upper 3X3 portions of the inverted, steady

5XS and 3X3 L-matrices are in agreement for typical values

of .

6.2 CONCLUSIONS CONCERNING THE UNSTEADY, ACTUATOR-DISC MODEL

In the unsteady, actuator-disc research, the inverted

complex L-martrices of the S.P. and S.V. methods are compared.

The following are the conclusions from this phase of the

research:

(1) The apparent mass terms (the M-matrix) for the

uncorrected pressure distributions are identical to the

apparent mass terms of an impermeable disc, but these values

vary significantly with lift distribution. The uncorrected

terms are always larger than the corrected values.

(2) The apparent mass terms are more sensitive to

the lift distribution than are the corresponding terms in

the L-matrix.

(3) The apparent mass terms (for either corrected or

uncorrected distributions) decrease with increasing harmonics

of induced velocity.

(4) The apparent mass terms of the S.V. method approach

those of the S.P. method at high reduced frequencies (K).

However, for small K, the S.V. and S.P. apparent mass terms

are considerably different.

(5) For # 900 and K > 0, the S.V. method predicts

imaginary terms for some of the off-diagonal elements while
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the S.P. method does not. However, these are small with

respect to the diagonal terms.

(6) The real part of the complex, inverted L matrix

is constant with K for the S.P. method, but varies with

both a and K for the S.V. method. This difference between

the methods is largest at high values of K, where the

imaginary part is dominant and the real terms are negligible.

6.3 CONCLUSIONS CONCERNING THE PRESCRIBED-WAKE MODEL

The conclusions of the prescribed-wake program are:

(1) Generally, a given rotor control perturbation, (0)

will result in a larger perturbation in CT than in CL or CM *

(2) The prescribed-wake L-matrix agrees favorably with

the L-matrix from the actuator-disc model, provided that the

V and a* parameters are chosen based on momentum considerations.

(3) The prescribed-wake L-matrix has antisymmetric

or cross coupling terms, L(3,2) and L(2,3), which are constant

with a. These are not predicted by the Actuator-Disc Theory.

These are due to the wake rotation associated with lifting

rotor. For realistic values of rotor power, however, these

are only about 10 percent as large as the diagonal terms.

6.4 COMMENTS CONCERNING THE ANALYTICAL MODEL

The analytical modelis given in tables 3 and 4. The

first column represents the closed form results of equation

for a corrected thrust distribution. The uncorrected thrust

distribution is unrealistic of a lifting rotor. The second

and third columns are for uncorrected roll and pitching
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moment distributions. There are several reasons for this

choice in the second and third columns:

(1) Either the corrected or uncorrected moment-

distribution of figure 7.2.2 would be reasonable for the

first-harmonic variation of lift.

(2) Figures 11 - 12 show that the two distributions

give nearly identical results (for L(1,3), L(2,2) and L(3,3)

when a > 100).

(3) The analytic L-matrix (for a* and v defined by

equations (119) and (31)) show excellent agreement with

prescribed-wake results. (For a loaded helicopter rotor

a* > 60 generally).

(4) The uncorrected distributions follow smooth curves

that appear to be identical to the a-functions in equation

(117a-c).

The M-matrix is chosen for this same mixture of corrected

and uncorrected load distributions. The choice of uncorrected

apparent mass for M(2,2) and M(3,3) is also consistent with

experimental results in reference (63) that show that these

give realistic time constants. An eigenvalue analysis of

[L] [M] (the eigenvalues are the time constants) shows that

there are no anomalies in the system. The induced flow has

three real, stable roots for all values of a between 0 and

900; and L is always invertible.

6.5 RECOMMENDATIONS FOR FURTHER RESEARCH

The recommendations for future research are in two

areas: 1) Unsteady, Actuator-Disc Theory and 2) Prescribed-
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Wake Theory. The following work is recommended to further

substantiate the present dynamic inflow model.

(1) The unsteady program should be exercised to use

more than 10 radial blade stations and to decrease azimuthal

increments a< 5 to increase accuracy of L-matrix calculations

for a < 10.

(2) Windtunnel testing should be conducted to verify

both the unsteady aerodynamic load distributions (CT, CL, CM)

and the unsteady induced velocities. This would help to

physically explain the transition of the L-matrix from a =

90 to a = 0.

(3) Stability and dynamic response of a helicopter

rotor should be calculated for 3X3 and 5X5 L-matrices as

well as for both the S.P. and S.V. inverted complex L-

matrices. This would provide added insight into the

differences of the two methods.

The prescribed-wake computer 1-esearch provided knowledge

of the effects of finite blades and wake contraction on

the L-matrix. This was the first successful attempt at

using a Prescribed-Wake Theory to develop a dynamic inflow

model. Therefore, the following ideas are offered for

future study:

(1) One should develop an empirical model to estimate

the wake rotation or swirl effects. The prescribed-wake

program could be used to correlate the empirical model at

high and low thrust levels.

L •.. ..
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(2) Thought should be given to modifying the PW

program to interpolate the blade circulation at Gauss

points and change the azimuthwise integration from

rectangular to trapizoidal; thus, increasing the accuracy

of the blade-load calculations.

(3) It would be interesting to use the PW program

to develop an L-matrix for autorotational flight. It would

be very useful in vortex-ring state, where momentum theory

is not valid.

(4) Someone should use an unsteady, prescribed-wake

model to discover the effects of wake contraction and finite

number of blades on the apparent mass terms.
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APPENDIX 7.1

Actuator Disc Coordinate System

We define a l.ind-Axis, Cartesian Coordinate System

(x', y', z') by a rotation of the (x, y, z) Disc Coordinates

through an angle a about the y/y' axis. The angle a is the

disc incidence angle. We further nondimensionalize the

Cartesian coordinate systems on the disc radius R. The new

Disc and Wind Coordinate Systems are called X', Y', Z' and

X, Y, Z respectively and are given in equation 7.1.1

(X, Y, Z) = 1 (x, y, z) (7.1.1)

(X', Y', Z') = 1 (x', y', z')

Both the Wind and Disc Coordinate Systems are depicted in

figure 7.1.1.

V___ x

VO X '

X Z'

z

Figure 7.1.1. Wind and Disc Cartesian Coordinate Systems
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The transformation between the two coordinate systems

is given by

H] == LCosa 0 -sinc [X1] (7.1.2)SY =0 1 0 Y1

L Z JLsina 0 Cosa jLZ'_

SX1 Cosa 0 sins X

Y : 0 I0Y

iV L -sina Cosa z

The Curvilinear Coordinate System (Ellipsoidal Coordinate

System) v, n, p is defined in equation 7.1.3

/ 2 1 2 (7.1.3)
X' = 1 - v 1 + n cos~p

2 2
Y = 1 - V 1 + n si np

Z' = -Wi

The Curvilinear Coordinate System (Ellipsoidal Coordinate

System as shown in figure 7.1.2 will cover the entire three

dimensional space once and only once if the restrictions

given below are enforced.

(7.1.4)
-I < v < +1

0 < < Go

0 < < 27t

In the Ellipsoidal Coordinate System, n = 0 is on the rotor

disc and the coordinate v changes signs as it crosses the

disc surface. The inverse transformation from the Disc

Coordinate System, X', Y', Z' to the Ellipsoidal Coordinate

System is given by

4- tTI]U . ... . . 1 1 II ..
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/22 2

rl +4 4Z

Where i7 = X' + Y' + *

i= tan- C (Y1

On the disc, equations 7.1.3 are used to relate the non-

dimensional blade radius to the ellipsoidal coordinates.

This yields
2 2 2
r R (1 -v) (7. 1.6)

n0

The following identity is required to perform thrust, pitch,

and roll force integrations

(7.1.7)
R

f fL(r) - f U(i) r- dr

0f

n-I 0n-i

f(v)v (1-v) dv R f(v)v (1-v) dv

-1 1

-R n1 f(fV)V (i-V)zn dv
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n-1
2 2

-2Rf(v)v (l- )v 2 dv, f(v) odd

0, f(v) even

Figure 7.1.3 depicts the relationship between the rotor

disc and the streamline along which we integrate to determine

the induced velocity at a point on the disc.

C--.

Figure 7.1.2. Curvilinear Coordinate System (Ellipsoidal
Coordinate System)
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1, Y,Y'

STREAMLINF

a) Top View

STREA. LINE [

dz' Q
dx'

I' Z

z

b) Side View

Figure 7.1.3. Integration of Induced Velocity Along a
Streamline in the X Direction
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APPENDIX 7.2

Legendre Polynomials and Their Associated Properties

The following Legendre Polynomials of the first kind

are required to evaluate the Mangler-Squire pressure

distribution. The following formulas are applicable when

-1 < v < 1

0 v(7.2.1)P1 (V) =V

o 2P3 (v) 2(5v -3)

P ) 1 = -3vlvI

1 2 /i_ 2
P (v) --v(7v-3)
2 z

P3(v) = lSv(l-v )

For the induced velocity calculations, we need to

determine d Pn(v). The following recursive formula can be
Tv

used to find the derivative of the Legendre functions of the

first kind.

(7.2.2)
dPn=V ) = nV pm n m Pm (v)

d I-2- 1 n(v) - 2, n

To determine the derivative of the polynomials given in

equation (7.2.1) using equation (7.2.2), we require the

use of the following polynomials.

(7.2.3)

0

P2{0 = (3v2-1)

)""-. -.. . -, ,.. :L¢. 2(v )..,
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1 2

= (1-vz13 2 2

P2 (v) 3(1-\)2

2

The Legendre Polynomials of the first kind have the following

properties of orthogonality and normalization.

,- o f0l1 m() pm (v)dv = 0 for n n' (7.2.4)

*..f'm2n2d 2 -n m) (7.2.5)

Normalization [Pv)]2d\ - +,)!

-1 n n *n-)

Legendre function of the second kind for Z outside the

segment (-1, +1) can be expressed in general form

S 109 Z+l (7.2.6)

O(Z) = 2 logZ

The Mangler-Squire pressure distribution requires that the

Legendre Ploynomials of the second kind be complex (i.e.

Qm (in)). The general form of the polynomials will involve
n

the natural logarithm of the complex number (ip~l)/(in-l).

This problem is circumvented by the use of the following

identity obtained from reference 73.

tan l z=~-lg4.-~.(7.2.7)
-1 ii+Z ( . .

tan Z 2 log -

A representative example of obtaining complex Legendre

functions will be performed by transforming equation (7.2.6)

for our variable Z = in
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Q(in) log in+l (7.2.8)
2 ' in-i

Qo(in) =

use of equation (7.2.7) and the fact (-i).-i) = 1 yields

Q (i) tan11 (7.2.9)
0 n

Making use of the above procedure, results in the following

Legendre functions of the second kind which are required for

the pressure distribution equation

-11 (7.2.10)

Q(in) = ntan - 1

Q = .(Sn +3)tan l1+ Sn +

1(i) = 3in l+n 2 t-11 -3il n 2 +
n

1. = . 2 / 2a- 1 + 2 -~2 + iQ (in) = -lin( 7 n +3) +ntanl i(21n +2) /I.n2 +

2 2 2 2

Q2(in) = -Sn(l+T2)tan" 1 + 15n + 10 -

3 TI l+n

As previously stated in section 3, the functions Q (in)

are evaluated on the rotor disc which requires n = 0. Thus,

to determine Qm (io) one must find tan -1 1/0 which could be
n

troublesome to the computer. Noting that for our Ellipsoidal

Coordinate System that n > 0 we can use the following

relationship which is obtained from reference 74 to evaluate

the functions on the disc

................ *
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(7.2.11)

-II - -1
tan 2- tan TI

when n = 0 tan-1 0 0

-1 I
tan TT = (7.2.12)

S 0

For the induced velocity calculations, we need to determine d (in).

dn
The following recursive fornula can be used to find the derivative of

the Legendre function of the second kind.

(7.2.13)
d f ( i n )  nn (in) + (n+m)i Qm

n 2 Qn 2 Qn-l_ i

S l+n2

Therefore, to determine the derivative of the polynomials

given in equation (7.2.10) using euqaiton (7.2.13), the

following additional polynomials are required.

Qo(in) = -itan- 
(7.2.14)

0 2 1 3in
Q2(in) = :(3n +)tan - - 2

12 n1 2

Q1 (in) = 1+n tan

1 3 2 2 - 1  isQ3 (i
n ) = -- (Sn +1) +n tan - + 2 -

2 2 -1I Y27fl

Q2(in) = 3i(l+n 2)tan -1 1 -3i2Z n l+n

Using equation (7.2.12), the Legendre functions of the

second kind on the rotor disc can be explicitly determined

and are given below
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TT. (7.2. 15)
Q0 (io) = -0(io) = -2i

0 1 3Q (io) = -1 1 =

1 (io) SQ

Q2((') = i Q4(O

Q3(io) = Q 0)= 2i

(io) = I Q 0(io) = 8
In the pressure distribution equation, the Legendr

Ifunction the essurecdiribtin) eqatin t e ce x

functions of the second kind Q 1(in) and Q 1(in) are complex

and the constants that premultiply them, C D and C D,

respectively, are also complex. Consequently, the pressure

distribution will. consist of real values. The recursive

formula for the derivative (7.2.13) includes the complex i

in the second term, this insures that derivatives of the

complex Q functions will be complex and derivatives of real

Q functions will be real. For example, finding the derivativu

of Q4I(in) which is complex, requires the usage of Qwhich

is real

1 4n 1 5i 1 (7.2.16)

dn 4( - Q4
( in )  + f Q3 (in)d n l+n2 l+n

Because the Q functions alternate between real and complex

numbers, the recursive derivative formula is useful. The

complex algebra will be circumvented in the computer program

by noting that all terms in the pressure distribution, are

real. Thus, the multiplication of the complex Q functions

by their respective complex constants is handled by the

1-,Aj
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negative of the product, because i.i = -1. For example,

Q4 (in).C 4 is handled as -Q4 (ij)-C41 where the complex

has been disregarded.

Figures 7.2.1 through 7.2.3 are plots of the Legendre

Polynomials of the first kind evaluated on the rotor disc.

Also depicted in these figures are the corrected load

distributions that result from combinations of the polynomials.

The Legendre Polynomials of the second kind, Qn(in), are shown

in figures 7.2.4 through 7.2.6. It is noted that all the

Q,(in) polynomials become zero as the ellipsoidal coordinate

eta approaches infinity. However, the rate of decays are
0

different, with Ql(in) dccaying at the slowest rate. At

an eta of 4.0 it is the only polynomial that is nonzero.
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APPENDIX 7.3

Actuator Disc Aerodynamic Loading

The purpose of this appendix is to describe the

various aerodynamic loadings associated with the Legendre

Polynomials. Due to the orthogonality of the Legendre

Polynomials the property of superposition holds. Conse-

quently, each loading will be described separately. The

actual trim flight loading condition will be represented

by a combination of all the loading conditions.

Figure 7.3.1 depicts a loading condition that only

has a radial variation. This loading is called the un-

corrected thrust distribution, and is given by equation

7.3.1 on the rotor disc.

(7.3.1)
P = -

3CTpO(v)

V2 1

The thrust loading is corrected with the use of PO(v) term.

This will yield zero lift both at the hub and edge of the

disc. This loading is shown in figure 7.3.2. It should be

noted that the thrust loading only varies in the radial di-

rection and has no azimuth variation.

A negative pitching moment is shown in figure 7.3.3.

The loading varies in the azimuth direction as cos*. The

loading will be zero at *=90 0 and *=270 ° . It should be

noted that the harmonic airloads (pitch moment, roll moment,
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etc.) do not change the total thrust on the disc, but only

changes its distribution.

Figure 7.3.4 is a negative rolling moment and is seen

to have maximum value at =900 and *=27 0 ° . At an azimuth

position of p-00 and 1800 the loading is zero. The rolling

moment varies as sin*.

The second harmonic aerodynamic loadings vary as

cos2, and sin2* and are shown in figures 7.3.5 and 7.3.6

respectively. These loadings will be zero at four azimuth

positions.
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- 20d

Figure 7.3.1. Uncorrected Thrust Distribution

V 270

% %

Figure 7.3.2. Corrected Thrust Distribution
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Y-2700

S 00- - - -

Figure 7.3.3. Negative Pitching Moment 'istrilbutio.

'V

270* 1 - g0o

% 40

Y-00

Figure 7.3.4. Negative Rolling Moment Distributioni
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Figure 7.3.6. Negative Second Hlarmonic Loading
Distribution of s2ip
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APPENDIX 7.4

Unsteady Actuator Disc-Supplemental Data

The remaining unsteady actuator disc results are

presented in the appendix. Figures 7.4.1 - 7.4.10 are

the magnitudes of the second through third column of the

complex inverted 5x5 L-matrix. The phase angles are pre-

sented in figures 7.4.11 - 7.4.20. Figures 7.4.21 -

7.4.30 are the imaginary terms of the complex inverted

L-matrix. The deviations between the S.P. real part and

S.V. real part are presented in figures 7.4.31 - 7.4.40.

Finally, the differences between the upper 3x3 of the

S.V. Sx5 inverted complex L-matrix and the S.V. 3x3 invert-

ed complex L-matrix are shown in figures 7.4.41 7.4.43.

- - ~ ..*i
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APPENDIX 7.5

Nomenclature

-1

a = two-dimensional lift curve slope, dCl/da rad

AD = abbreviation for Actuator Disc

Ao = real component of out-of-phase pressure

b = number of rotor blades

B = tip loss factor

B = imaginary component of out-of-phase pressure
0 distribution

c = blade cord length, ft.

{CD} = column matrix of constants CM and D of Mangler-
Squire pressure distribution

n  n

Cdo* = equivalent drag coefficient

CL = harmonic perturbatin of roll-moment coefficient
= roll moment/pS2 R , positive advancing blade
down

C = second-hrTonic-pressure perturbation coefficient
2L = L 2/P7T R

C = harmonic perturbation of pitch-moment coefficient
- pitch moment/7 2 R 5, positive nose up

= second-htrTonic-pressure perturbation coefficient
2M = M2 /p-rSI R

CT = harmonic perturbation of thrust coefficient

2'.
C = steady value of thrust coefficient = T/ r72 RT

Cn = constant in the pressure distribution multiplying
the cosine term

D.L. = abbreviation for disc loading, lb/ft 2

D = constant in the pressure distribution multiplying
n the sine term

{F} = column matrix of thrust, rolling and pitching
moment coefficients

{dF} = generalized rotor thrust and moments

i =/T]
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[I] * identity matrix

IA = apparent inertia of air, slug-ft 2

j

K = slope of Glauert's linear representation of
momentum induced-velocity distribution also used
as the reduced frequency, w/v, in unsteady
actuator disc theory

r-K_ = nondimensional apparent mass diagonal matrix

[KE] = inverse of empirical (L] matrix

KMK = nondimensional apparent mass and inertia of
impermeable disc

i)' = lift per radial blade station, i

L rotor roll moment

[L] - nonuniform induced inflow matrix

[f] = matrix that relates the constants Cm and Dm of
the pressure distribution to the induced fyow
perturbations

[LE] = empirical value for quasi-steady portion of
L-matrix

[L(K)] = complex or unsteady nonuniform induced inflow
matrix

EL(K)]E empirical complex L-matrix

= Laplace Operator

M = rotor pitch moment

[M], [M'] = rotor response partial derivative matrix for
control inputs without inflow, open-loop and
closed-loop respectively

I] - apparent mass matrix

mA = apparent mass of air, slugs

N = total number of rotor azimuth positions

[N] = rotor response partial derivative matrix for
induced inflow components

p - Manglcr-S uire pressure distribution
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m
Pn 0 Legendre functions of the first kind

Po - complex pressure distribution utilized in

superposition of pressure method

PW - abbreviation for Prescribed Wake

* nondimensional fluid velocity, q/fnR

q. = in-phase induced velocity components in the i
axis direction

qi = component of fluid velocity in the i axis

[Q] = nonuniform induced inflow matrix, imaginary
parts only

V.(X,Y,Z) = induced velocity at point (X, Y, Z) in the idirection

Qm = Legendre functions of the second kind
n
r = distance of blade element from axis of rotation

r = nondimensional rotor distance, r/R

R = rotor radius, ft.

s = Laplace domain variable

S.P. = abbreviation for Superposition of Pressures

S.V. = abbreviation for Superposition of Velocities

T = rotor thrust, lb.

[T] = matrix that relates the lift distribution {F
to coefficient matrix {CD}

u = imaginary component or out-of-phase induced
velocity

v = momentum theory induced velocity, ft/sec
0

v(r) = induced velocity at nondimensional blade radius
station

v - induced flow parameter

VFS = VM - free stream velocity, ft/sec

V = forward velocity of the rotor

i -i
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VR = resultant airflow through the rotor

Ij(X,Y,Z) = nondimensional induced velocity normal to thc
rotor disc

w = real component or in-phase induced velocity

X, Y, Z = Wind Cartesian Coordinate System

X' Y', Z' = Disc Cartesian Coordinate System

', Z' = location of the induced velocity segment as it
is being integrated along the streamline, i.e.
functions of

A) = 6/6*

C )' = 61x

' i= 6/6i

= hub pitch angle, positive nose up; also angle-of-
attack of tip path plane

a* = effective angle-of-attack for a thrusting rotor

Y = lock number, pacR4 JRr2dm

Y* = equivalent lock number

rb = circulation about the rotor blade

0 = blade pitch angle

= steady collective pitch angle

8o, as, 0 c = rotor pitch angles

{dO} = generalized control inputs

= classical inflow ratio = (Vsin(a)-v)/SIR; also
for dynamic inflow theory it is the total inflow
through the rotor including induced flow

= steady inflow ratio = V/S2R + v

{dA) = generalized inflow components

Nto' Xs' Xc - inflow perturbations including induced flow

Pi = classical advance ratio = V cosa/QR

v = total induced flow

'a . L'
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v = induced flow due to steady rotor thrust

Vo, Vs, Vc, = induced flow perturbations
V 2s V2c

{v} = induced flow perturbation matrix

= "dummy" variable of integration along streamline
or in X axis direction

3
p = mass density of air slugs/ft

= rotor solidity = bc/7R

= inflow time constant

TM , T, = induced flow time constants; thrust, pitch and
roll respectively, rad -l

= nondimensional Mangler-Squire pressure
distribution = p/pV

2

= in-phase pressure distribution for Superposition
of Velocities Method

= nondimensional Mangler.-Squire pressure 2
distribution (rotor tip speed) = P/p(QR)

= rotor blade azimuth position, rad

w = excitation frequency divided by Q

Wf = nondimensional frequency in fixed frame

0 = rotor blade angular velocity, rad/sec

X = wake skew angle, X - tan -1 u/XO

v, n, * = Ellipsoidal Coordinate System

V = vector operator - + Y + a z

div = divergence
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